scholarly journals Comparison of the Microwave Absorption Properties of Opuntia ficus-indica, Agave atrovirens, and Cocos nucifera L. Husk

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Jorge Simón ◽  
J. Villanueva-Maldonado ◽  
Francisco R. Castillo-Soria ◽  
Marco Cardenas-Juarez ◽  
Edgar Briones ◽  
...  

In this work, a comparison of the microwave absorption properties of Opuntia ficus-indica cladodes, Agave atrovirens branches, and Cocos nucifera L. husk samples was performed. The study was carried out by inserting dry and powdered samples of these organic materials transversely and in the middle of a rectangular waveguide, for which scattering parameters S21 and S11 were measured to estimate the absorption coefficient. These measurements were compared to determine the material that behaves the best as a microwave absorber with a view to develop future low-cost and eco-friendly products by reusing agricultural waste. Specifically, Agave atrovirens sample showed the best performance, having an average value of absorption coefficient of 0.4218, while its maximum was 0.5792 at 9.706 GHz within the range from 8.005 to 13 GHz.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hongyan Xu ◽  
Zhenyin Hai ◽  
Jiangtao Diwu ◽  
Qiang Zhang ◽  
Libo Gao ◽  
...  

The core-shell structured Co3O4-PANI nanocomposites have been successfully prepared using an in situ polymerization method, while the core Co3O4 nanoparticles were synthesized by carbon-assisted method using degreasing cotton as a template. The obtained samples were characterized by XRD, TEM, FTIR, and XPS. The results indicated that the amorphous PANI was well covered on the surface of the spinel Co3O4 and the Co3O4-PANI with core-shell structure was formed with particle size of about 100 nm. The interfacial interaction of the core-shell nanocomposite greatly enhances the microwave absorption properties. The maximum reflection loss of Co3O4-PANI is up to −45.8 dB at 11.7 GHz with a thickness of 2.5 mm and the adsorption bandwidth with the reflection loss below −10 dB reaches 14.1 GHz ranging from 3.9 to 18 GHz when the thickness is between 2 and 5.5 mm. Therefore, the facilely synthesized and low-cost Co3O4-PANI nanocomposite with superior microwave absorption properties can be a promising nanomaterial for high efficient microwave absorption.


2019 ◽  
Vol 7 (30) ◽  
pp. 9219-9228 ◽  
Author(s):  
Peitao Hu ◽  
Shun Dong ◽  
Xiutao Li ◽  
Jingmao Chen ◽  
Xinghong Zhang ◽  
...  

Herein, we present a low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties.


2009 ◽  
Vol 25 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Hong JIANG ◽  
Jia GUO ◽  
Lu ZHAO ◽  
Hong ZHU

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


Nanoscale ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 3967-3971 ◽  
Author(s):  
Jingjing Jiang ◽  
Da Li ◽  
Dianyu Geng ◽  
Jing An ◽  
Jun He ◽  
...  

2021 ◽  
Vol 47 (10) ◽  
pp. 14455-14463 ◽  
Author(s):  
Zhaowen Ren ◽  
Wancheng Zhou ◽  
Yuchang Qing ◽  
Shichang Duan ◽  
Haijun Pan ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (105) ◽  
pp. 61219-61225 ◽  
Author(s):  
Biao Zhao ◽  
Gang Shao ◽  
Bingbing Fan ◽  
Wanyu Zhao ◽  
Yajun Xie ◽  
...  

The microwave absorption properties of ultrathin ZnS wall-coated Ni composites were superior to those of Ni microspheres and ZnS particles.


Sign in / Sign up

Export Citation Format

Share Document