scholarly journals Antitumoral and Immunomodulatory Effect of Mahonia aquifolium Extracts

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Andra Diana Andreicuț ◽  
Eva Fischer-Fodor ◽  
Alina Elena Pârvu ◽  
Adrian Bogdan Ţigu ◽  
Mihai Cenariu ◽  
...  

The prodrug potential of Mahonia aquifolium, a plant used for centuries in traditional medicine, recently gained visibility in the literature, and the activity of several active compounds isolated from its extracts was studied on biologic systems in vitro and in vivo. Whereas the antioxidative and antitumor activities of M. aquifolium-derived compounds were studied at some extent, there are very few data about their outcome on the immune system and tumor cells. To elucidate the M. aquifolium potential immunomodulatory and antiproliferative effects, the bark, leaf, flower, green fruit, and ripe fruit extracts from the plant were tested on peripheral blood mononuclear cells and tumor cells. The extracts exert fine-tuned control on the immune response, by modulating the CD25 lymphocyte activation pathway, the interleukin-10 signaling, and the tumor necrosis-alpha secretion in four distinct human peripheral blood mononuclear cell (PBMC) subpopulations. M. aquifolium extracts exhibit a moderate cytotoxicity and changes in the signaling pathways linked to cell adhesion, proliferation, migration, and apoptosis of the tumor cells. These results open perspectives to further investigation of the M. aquifolium extract prodrug potential.

2018 ◽  
Vol 23 (6) ◽  
pp. 509-517 ◽  
Author(s):  
Anna J. Boland ◽  
Nisha Gangadharan ◽  
Pierce Kavanagh ◽  
Linda Hemeryck ◽  
Jennifer Kieran ◽  
...  

Statins are mainstream therapy in the treatment and prevention of cardiovascular disease through inhibitory effects on cholesterol synthesis. However, statins’ beneficial effects in cardiovascular disease may also be attributable to their role as anti-inflammatory mediators. Here, we investigated the effects of simvastatin treatment on expression levels of interleukin (IL) 1β in both patient with hyperlipidemia and healthy human peripheral blood mononuclear cells (PBMCs) using cholesterol crystals (CC), a cardiovascular pathogenic stimulus for activation of the NOD-like receptor pyrin domain–containing protein 3 (NLRP3) inflammasome. Cholesterol crystal-induced NLRP3 inflammasome activation was used to trigger maturation and release of IL-1β in PBMCs. Specifically, isolated PBMCs from patients with hyperlipidemia at baseline and following 8 weeks of in vivo treatment with simvastatin (10-20 mg) daily were stimulated with lipopolysaccharide (LPS; 100 ng/mL) for 3 hours to induce proIL-Iβ expression followed by CC (2 mg/mL) stimulation for further 18 hours to activate the NLRP3 inflammasome complex to induce maturation/activation of IL-1β. Peripheral blood mononuclear cells were also isolated from healthy donors and stimulated in vitro with simvastatin (50, 25, 5, and 2 µmol/L) prior to stimulation with LPS and CC as described above. The effects of simvastatin treatment on levels of IL-1β expression were determined by enzyme-linked immunosorbent assay and western blot. Both in vitro and in vivo treatments with simvastatin led to a significant reduction in the levels of expression of IL-1β in response to stimulation with CC. Simvastatin inhibits the expression and activation of IL-1β induced by CC in PBMCs, which may contribute to its protective role in patients with cardiovascular disease.


Pteridines ◽  
2013 ◽  
Vol 24 (3) ◽  
pp. 237-243
Author(s):  
Sebastian Schroecksnadel ◽  
Elena-Sophia Ledjeff ◽  
Johanna Gostner ◽  
Christiana Winkler ◽  
Katharina Kurz ◽  
...  

AbstractIn vitro, large amounts of neopterin are released from human monocyte-derived macrophages and dendritic cells primarily upon stimulation with Th1-type cytokine interferon-γ (IFN-γ). IFN-γ also induces the enzyme indoleamine 2,3-dioxygenase (IDO), which degrades tryptophan (TRP) to form kynurenine (KYN). IDO-mediated TRP catabolism is very effective in suppressing the proliferation of T lymphocytes as well as of pathogens in vitro and in vivo. In this study, we investigated whether exogenously added neopterin may influence IDO activity in resting and in stimulated peripheral blood mononuclear cells (PBMC). PBMC were isolated from healthy donors, and neopterin was added in a concentration range from 0.01 to 50 μmol/L. After 30 min, PBMC were stimulated or not with 10 μg/mL of mitogen phytohemagglutinin (PHA). After 48 h, culture supernatants were collected, KYN and TRP concentrations were measured by high-performance liquid chromatography, and the ratio of KYN vs. TRP was calculated as an estimate of IDO activity. Spontaneous as well as PHA-induced TRP breakdown was suppressed by exogenously added neopterin in a dose-dependent way; the lowest active concentration of neopterin was <100 nmol/L. As neopterin concentrations in the nanomolar range are commonly observed in patients suffering from infections, sepsis, or uremia, our results suggest that neopterin formation might also serve as a feedback mechanism to slow down TRP degradation in vivo.


2010 ◽  
Vol 76 (24) ◽  
pp. 8259-8264 ◽  
Author(s):  
Benoît Foligné ◽  
Stéphanie-Marie Deutsch ◽  
Jérôme Breton ◽  
Fabien J. Cousin ◽  
Joëlle Dewulf ◽  
...  

ABSTRACT Immunomodulatory properties of 10 dairy propionibacteria, analyzed on human peripheral blood mononuclear cells (PBMCs), revealed a highly strain-dependent induction of anti-inflammatory cytokine interleukin 10 (IL-10). Two selected strains of Propionibacterium freudenreichii showed a protective effect against two models of colitis in mice, suggesting a probiotic potential predicted by immune-based selection criteria for these cheese starter bacteria.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 795-802
Author(s):  
Jay S. Fine ◽  
Xiao-Yan Cai ◽  
Luminita Justice ◽  
Carl P. Gommoll ◽  
Linda D. Hamilton ◽  
...  

We have identified a small molecular weight compound, SCH 14988, which specifically stimulates in vitro granulocyte-colony stimulating factor (G-CSF ) production from activated human peripheral blood mononuclear cells and monocytes but not other cytokines or CSFs with hematoregulatory activity. In vivo administration of SCH 14988 to mice rendered neutropenic by cyclophosphamide treatment resulted in the accelerated recovery of the peripheral neutrophil compartment. This activity correlated with increased in vivo G-CSF levels and stimulation of marrow granulopoiesis, and was comparable to that of exogenously administered recombinant human G-CSF. No alterations to other leukocyte populations in peripheral blood, spleen, or the peritoneal cavity were observed. These findings suggest that SCH 14988 may be clinically useful to enhance neutrophil granulopoiesis, as well as to study the mechanisms involved in G-CSF gene regulation.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 795-802 ◽  
Author(s):  
Jay S. Fine ◽  
Xiao-Yan Cai ◽  
Luminita Justice ◽  
Carl P. Gommoll ◽  
Linda D. Hamilton ◽  
...  

Abstract We have identified a small molecular weight compound, SCH 14988, which specifically stimulates in vitro granulocyte-colony stimulating factor (G-CSF ) production from activated human peripheral blood mononuclear cells and monocytes but not other cytokines or CSFs with hematoregulatory activity. In vivo administration of SCH 14988 to mice rendered neutropenic by cyclophosphamide treatment resulted in the accelerated recovery of the peripheral neutrophil compartment. This activity correlated with increased in vivo G-CSF levels and stimulation of marrow granulopoiesis, and was comparable to that of exogenously administered recombinant human G-CSF. No alterations to other leukocyte populations in peripheral blood, spleen, or the peritoneal cavity were observed. These findings suggest that SCH 14988 may be clinically useful to enhance neutrophil granulopoiesis, as well as to study the mechanisms involved in G-CSF gene regulation.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2516-2525 ◽  
Author(s):  
K Meszaros ◽  
S Aberle ◽  
R Dedrick ◽  
R Machovich ◽  
A Horwitz ◽  
...  

Abstract Mononuclear phagocytes, stimulated by bacterial lipopolysaccharide (LPS), have been implicated in the activation of coagulation in sepsis and endotoxemia. In monocytes LPS induces the synthesis of tissue factor (TF) which, assembled with factor VII, initiates the blood coagulation cascades. In this study we investigated the mechanism of LPS recognition by monocytes, and the consequent expression of TF mRNA and TF activity. We also studied the inhibition of these effects of LPS by rBPI23, a 23-kD recombinant fragment of bactericidal/permeability increasing protein, which has been shown to antagonize LPS in vitro and in vivo. Human peripheral blood mononuclear cells, or monocytes isolated by adherence, were stimulated with Escherichia coli O113 LPS at physiologically relevant concentrations (&gt; or = 10 pg/mL). The effect of LPS was dependent on the presence of the serum protein LBP (lipopolysaccharide-binding protein), as shown by the potentiating effect of human recombinant LBP or serum. Furthermore, recognition of low amounts of LPS by monocytes was also dependent on CD14 receptors, because monoclonal antibodies against CD14 greatly reduced the LPS sensitivity of monocytes in the presence of serum or rLBP. Induction of TF activity and mRNA expression by LPS were inhibited by rBPI23. The expression of tumor necrosis factor showed qualitatively similar changes. Considering the involvement of LPS-induced TF in the potentially lethal intravascular coagulation in sepsis, inhibition of TF induction by rBPI23 may be of therapeutic benefit.


Sign in / Sign up

Export Citation Format

Share Document