scholarly journals TFAP4 Promotes Hepatocellular Carcinoma Invasion and Metastasis via Activating the PI3K/AKT Signaling Pathway

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Tao Huang ◽  
Qi-Feng Chen ◽  
Bo-Yang Chang ◽  
Lu-Jun Shen ◽  
Wang Li ◽  
...  

Transcription factor activating enhancer binding protein 4 (TFAP4) is established as a regulator of human cancer genesis and progression. Overexpression of TFAP4 indicates poor prognosis in various malignancies. The current study was performed to quantify TFAP4 expression as well as to further determine its potential prognostic value and functional role in patients with hepatocellular carcinoma (HCC). We identified that the expression of TFAP4 mRNA in 369 tumor tissues was higher than that in 160 normal liver tissues. Upregulated TFAP4 expressions were discovered in HCC cell lines compared to the healthy liver cell line, and similarly, the levels of TFAP4 were higher in tumor tissues than its expression in paratumor tissues. High mRNA and protein expression of TFAP4 was associated with worse overall survival (OS) and disease-free survival (DFS). Additionally, TFAP4 expression emerged as a risk factor independently affecting both OS and DFS of HCC patients. Functional studies demonstrated that TFAP4 increased HCC cell migration and invasion. Further investigations found that TFAP4 promotes invasion and metastasis by inducing epithelial-mesenchymal transition (EMT) and regulating MMP-9 expression via activating the PI3K/AKT signaling pathway in HCC. In conclusion, our study demonstrated that TFAP4 is a valuable prognostic biomarker in determining the likelihood of tumor metastasis and recurrence, as well as the long-term survival rates of HCC patients. Exploring the regulatory mechanism of TFAP4 will also contribute to the development of new prevention and treatment strategies for HCC.

2020 ◽  
Author(s):  
Mingyue Zhu ◽  
Haipeng Feng ◽  
Bo Lin ◽  
Ying Zhou ◽  
Yifeng Zheng ◽  
...  

Abstract Background Vincosamide(Vinco) was first identified in the methanolic extract of the leaves of Psychotria leiocarpa, and Vinco has important anti-inflammatory effects and activity against cholinesterase. However, whether Vinco inhibits the malignant behaviors of hepatocellular carcinoma(HCC) cells is still unclear. In the present study, we explored the role of Vinco in suppressing the malignant behaviors of HCC cells. Methods MTT and trypan blue exclusion assays were applied to detect the proliferation and death of HCC cells; electron microscopy was performed to observe change in cellular mitochondrial morphology; scratch repair and Transwell assays were used to analyze the migration and invasion of HCC cells; the expression and localization of proteins were detected by laser confocal microscopy and Western blotting; and the growth of the cancer cells in vivo was assessed in a mouse tumor model. Results At a dose of 10–80 µg/ml, Vinco inhibited the proliferation of HCC cells and promoted their apoptosis in a time- and dose-independent manner but had little effect on normal liver cells. Additionally, 80 µg/ml Vinco significantly disrupted the morphology of mitochondria and suppressed the migration and invasion of HCC cells. The growth of HCC cells in the animal tumor model was significantly inhibited after treatment with Vinco (10 mg/kg/day) for 3 days. The results of the present study indicate that Vinco (10–80 µg/ml) plays novel roles in activating caspase-3, promoting the expression of PTEN, and inhibiting the phosphorylation of AKT(Ser 473) and mTOR (Thr2448) and that Vinco was able to also suppress the expression of CXCR4, Src, MMP9, EpCAM, Ras and Oct4 in HCC cells. Conclusions Vinco plays a role in inhibiting the malignant behaviors of HCC cells, and the molecular mechanism may involve in suppressing the expression of the growth-, metastasis-related factors Src, Ras, MMP9, EpCAM and CXCR4 and activating the activity of caspase-3. Vinco also blocks the PI3K/AKT signaling pathway. Thus, Vinco is an available chemotherapy for HCC patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0245871
Author(s):  
Malinee Thanee ◽  
Hasaya Dokduang ◽  
Yingpinyapat Kittirat ◽  
Jutarop Phetcharaburanin ◽  
Poramate Klanrit ◽  
...  

CD44 is a transmembrane glycoprotein, the phosphorylation of which can directly trigger intracellular signaling, particularly Akt protein, for supporting cell growth, motility and invasion. This study examined the role of CD44 on the progression of Cholangiocarcinoma (CCA) using metabolic profiling to investigate the molecular mechanisms involved in the Akt signaling pathway. Our results show that the silencing of CD44 decreases Akt and mTOR phosphorylation resulting in p21 and Bax accumulation and Bcl-2 suppression that reduces cell proliferation. Moreover, an inhibition of cell migration and invasion regulated by CD44. Similarly, the silencing of CD44 showed an alteration in the epithelial-mesenchymal transition (EMT), e.g. an upregulation of E-cadherin and a downregulation of vimentin, and the reduction of the matrix metalloproteinase (MMP)-9 signal. Interestingly, a depletion of CD44 leads to metabolic pathway changes resulting in redox status modification and Trolox (anti-oxidant) led to the recovery of the cancer cell functions. Based on our findings, the regulation of CCA progression and metastasis via the redox status-related Akt signaling pathway depends on the alteration of metabolic profiling synchronized by CD44.


2020 ◽  
Author(s):  
Hongliang Mei ◽  
Zhiguo Yu ◽  
Guanqi Zhang ◽  
Zhiyuan Huang ◽  
Hanjun Li ◽  
...  

Abstract Background: KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) has been reported to be associated with hepatocellular carcinoma (HCC), which is considered as one of the most common cancers worldwide. However, the mechanism of action of KCNQ1OT1 in human HCC has not been fully explained. In this study, we aimed to explore the functional role and the potential mechanism of KCNQ1OT1 in human HCC.Methods: First, we analyzed the expression levels of KCNQ1OT1 in HCC tissues in starBase database and detected the expression of KCNQ1OT1 in HCC cell lines by quantitative real-time polymerase chain reaction assays. Next, we analyzed the role of KCNQ1OT1 in migration, invasion and proliferation of HCC by scratch wound healing, transwell and cell counting kit-8 assays. Finally, we analyzed the potential interrelationship between KCNQ1OT1 and PI3K/AKT signaling pathway through western blot assays.Results: Based on bioinformatics analyses, we found that KCNQ1OT1 was highly expressed in HCC tissues and its high expression was associated with a poor prognosis in HCC patients. We also confirmed an abnormal increase in the expression of KCNQ1OT1 in HCC cell lines. KCNQ1OT1 knockdown was found to have a negative impact on proliferation, migration and invasion of HCC cells. In addition, interference with the expression of KCNQ1OT1 reduced the phosphorylation level of AKT and the protein level of PI3K, indicating the association of KCNQ1OT1 with the PI3K/AKT signaling pathway.Conclusions: Collectively, this study confirmed the important role of KCNQ1OT1 in promoting HCC growth and revealed the inhibitory effect of KCNQ1OT1 on the PI3K/AKT signaling pathway. This work may contribute to a better understanding of HCC progression and provide a potential biomarker for HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao Wang ◽  
Qianqian Chen

Abstract Background The metastasis of oral cancer is one of the main causes of death. However, the mechanisms underlying oral cancer metastasis have not been completely elucidated. Fermitin family member 1 (FERMT1) plays an -oncogene role in many cancers; however, the role of FERMT1 in oral squamous cell cancer (OSCC) remains unclear. Methods In this study, OSCC cells were treated with 5 ng/ml recombinant human Transforming growth factor-β1 (TGF-β1) protein. FERMT1 expression was measured in OSCC cell lines by RT-qPCR and western blotting. The effect of FERMT1 knockdown on the migration and invasion of OSCC cells was evaluated by Transwell assay. The epithelial-mesenchymal transition (EMT) and PI3K/AKT signaling pathway-related mRNA expression and protein levels were assessed by RT-qPCR and western blotting. Results We found that FERMT1 expression was elevated in TGF-β1-induced OSCC cell lines, and knockdown of FERMT1 inhibited the migration and invasion in TGF-β1-induced OSCC cells. FERMT1 silencing inhibited vimentin, N-cadherin, matrix metalloproteinase 9 (MMP-9) expression and promoted E-cadherin expression, suggesting that FERMT1 silencing inhibited EMT in TGF-β1-induced OSCC cells. Furthermore, FERMT1 silencing inactivated the PI3K/AKT signaling pathway in TGF-β1-induced OSCC cells. Activation of the PI3K/AKT signaling pathway reversed the effect of FERMT1 silencing on OSCC cell migration, invasion, and EMT. Conclusions FERMT1 silencing inhibits the migration, invasion, and EMT of OSCC cells via inactivation of the PI3K/AKT signaling pathway, suggesting that FERMT1 is a novel and potential therapeutic target for anti-metastatic strategies for OSCC.


2020 ◽  
Author(s):  
Mingyue Zhu ◽  
Haipeng Feng ◽  
Bo Lin ◽  
Ying Zhou ◽  
Yifeng Zheng ◽  
...  

Abstract Background: Vincosamide(Vinco) was first identified in the methanolic extract of the leaves of Psychotria leiocarpa, and Vinco has important anti-inflammatory effects and activity against cholinesterase, Vinco also has a trait to ant-tumor. However, whether Vinco is able to inhibit the malignant behaviors of hepatocellular carcinoma(HCC) cells is still unclear. In the present study, we explored the role of Vinco in suppressing the malignant behaviors of HCC cells.Methods: MTT, trypan blue exclusion assay and the Cell Counting Kit(CCK)-8 analysis were applied to detect the proliferation and death of HCC cells; electron microscopy was performed to observe the change of cellular mitochondrial morphology; scratch repair and Transwell assays were used to analyze the migration and invasion of HCC cells; the expression and localization of proteins were detected by laser confocal microscopy and Western blotting; and the growth of the cancer cells in in vivo was assessed in a mouse tumorous model.Results: At a dose of 10-80 mg/ml, Vinco inhibited the proliferation and promoted death of HCC cells in a dose-independent manner, but had low cytotoxcity effect on normal liver cells. Additionally, 80 mg/ml of Vinco could significantly disrupt the morphology of mitochondria, suppress the migration and invasion of HCC cells. The growth of HCC cells in the animal tumorous model was significantly inhibited after treatment with Vinco (10 mg/kg/day) for 3 days. The results of the present study indicated that Vinco (10-80 mg/ml) played a role in activating caspase-3, promoting the expression of PTEN, and inhibiting the phosphorylation of AKT(Ser473) and mTOR(Thr2448), Vinco also has a trait for suppressing the expression of CXCR4, Src, MMP9, EpCAM, Ras and Oct4 in HCC cells.Conclusions: Vinco has a role in inhibiting the malignant behaviors of HCC cells; the role molecular mechanism of Vinco maybe involve in restraining expression of the growth-, metastasis-related factors Src, Ras, MMP9, EpCAM and CXCR4, and activating the activity of caspase-3. Vinco also could block PI3K/AKT signaling pathway. Thus, Vinco is an available chemotherapy for HCC patients.


Sign in / Sign up

Export Citation Format

Share Document