scholarly journals Raddeanin A Induces Apoptosis and Cycle Arrest in Human HCT116 Cells through PI3K/AKT Pathway Regulation In Vitro and In Vivo

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Chunqin Meng ◽  
Yuhao Teng ◽  
Xiaodong Jiang

This study aimed to investigate the in vitro and in vivo effects of Raddeanin A on apoptosis and the cell cycle in the human colorectal cell line, HCT116, and to explore the possible underlying mechanisms of action. We found the growth inhibition rate gradually increased as the drug concentration increased via the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, which indicated that Raddeanin A significantly inhibited the growth of HCT116 cells. Flow cytometry (FCM) showed that Raddeanin A concentration-dependently induced apoptosis in HCT116 cells. In addition, the percentage of cells in the G0/G1phase was noticeably increased, which indicated that Raddeanin A blocked cell cycle progression in HCT116 cells and caused arrest in the G0/G1phase. Moreover, the expression of proteins involved in the PI3K/AKT signaling pathway (e.g., p-PI3K and p-AKT) was decreased. The results showed that in vivo revealed that Raddeanin A significantly inhibited tumor growth in an HCT116-xenografted mouse model; apoptotic cells were also detected in the tumor tissue. The expression of the tissue proteins cyclinD1, cyclinE, p-PI3K, and p-AKT was decreased. The above results show that the Raddeanin A exerted a strong antitumor effect in the human colorectal cell line HCT116 both in vitro and in vivo. This effect may be caused by the induction of apoptosis and cycle arrest achieved through PI3K/AKT signaling pathway regulation.

2020 ◽  
Author(s):  
zhongli wang ◽  
chao liu

Abstract Background: The expression of circRNA_100269 in gastric cancer (GC) tissues and cells, together with its regulatory roles on GC cells were investigated. Methods: The levels of circRNA_100269 in GC and matched para-carcinoma tissues, as well as in human GC cell lines and normal gastric epithelial cells were evaluated using RT-qPCR. The models with overexpression or knockdown of circRNA_100269 were generated using lentiviral vectors. Cell viability was examined using MTT assay; cell migration and invasive activity were determined by wound healing and Transwell assay. Cell cycle arrest and apoptosis were assessed; molecules involved in PI3K/Akt signaling, apoptosis and EMT were evaluated using RT-qPCR and immunoblotting. Tumour growth and expression of relevant proteins were examined in circRNA_100269 knockout mice.Results: The results indicated the expression of circRNA_100269 was dramatically decreased in GC samples compared with para-carcinoma tissues (p<0.05), while the levels of PI3K were notably increased (p<0.05). Moreover, the level of circRNA_100269 was relevant to histology grade and occurrence of metastasis in GC patients (p<0.05), where circRNA_100269 and PI3K was inversely correlated (p<0.05). Additionally, circRNA_100269 was downregulated in GC cells compared with normal gastric epithelial cells. Overexpressed circRNA_100269 remarkably suppressed the proliferation, migration, invasion and EMT of GC cells (p<0.05), induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis (p<0.05). In addition, PI3K/Akt signaling was involved in circRNA_100269-mediated proliferation, migration, invasion, EMT and apoptosis in GC cells (p<0.05). Knockdown of circRNA_100269 also significantly promoted tumor growth in vivo (p<0.05). Conclusions: the data of the present study suggested that the expression level of circRNA_100269 was decreased in GC tissues and cells. In addition, circRNA_100269 inhibited the progression of GC by suppressing PI3K/Akt signaling. Therefore, circRNA_100269/PI3K/Akt axis may be a potential therapeutic target for GC treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Xiaolong Du ◽  
Yujing Zhao ◽  
Yongqian Ma ◽  
Hongshun Xing ◽  
Xingang Li

Objective. To investigate the possible development of radix hedysari polysaccharide as an antiglioma drug, we studied the effect of radix hedysari polysaccharide on glioma cells in vitro and the growth of glioma in nude mice and on the phagocytosis of macrophages in nude mice with glioma. Methods. The effect of radix hedysari polysaccharide on the growth of glioma was studied based on U251 cell line in vitro. The effect of radix hedysari polysaccharide on the growth of glioma was studied in vivo. The growth inhibition rate of radix hedysari polysaccharide on U251 cell line was determined by the MTT assay. The cell cycle of U251 was analyzed by flow cytometry. The expression of cytokines in U251 cells and tumor tissues was detected using PCR. The phagocytosis of macrophages in the serum of glioma nude mice was detected by Giemsa staining. TNF-α signaling pathway proteins in the serum of glioma nude mice were detected by ELISA. Results. Radix hedysari polysaccharide inhibited the growth of U251 cells, induced apoptosis in G1 phase by cell cycle arrest, and facilitated apoptosis in glioma mice by regulating cell cycle. Mice injected with radix hedysari polysaccharide showed delayed tumor growth and grew slowly. Radix hedysari polysaccharide enhanced the phagocytosis of macrophages in glioma nude mice. Radix hedysari polysaccharides could inhibit tumor development by regulating the immune function of tumor mice and affecting the TNF-α signaling pathway. Conclusion. Radix hedysari polysaccharide can effectively inhibit the growth of glioma and affect the TNF-α signaling pathway, thus playing an antiglioma role.


2020 ◽  
Author(s):  
zhongli wang ◽  
chao liu

Abstract Background: The expression of circRNA_100269 in gastric cancer (GC) tissues and cells, together with its regulatory roles on GC cells were investigated. Methods: The levels of circRNA_100269 in GC and matched para-carcinoma tissues, as well as in human GC cell lines and normal gastric epithelial cells were evaluated using RT-qPCR. The models with overexpression or knockdown of circRNA_100269 were generated using lentiviral vectors. Cell viability was examined using MTT assay; cell migration and invasive activity were determined by wound healing and Transwell assay. Cell cycle arrest and apoptosis were assessed; molecules involved in PI3K/Akt signaling, apoptosis and EMT were evaluated using RT-qPCR and immunoblotting. Tumour growth and expression of relevant proteins were examined in circRNA_100269 knockout mice. Results: The results indicated the expression of circRNA_100269 was dramatically decreased in GC samples compared with para-carcinoma tissues (p < 0.05), while the levels of PI3K were notably increased (p < 0.05). Moreover, the level of circRNA_100269 was relevant to histology grade and occurrence of metastasis in GC patients (p < 0.05), where circRNA_100269 and PI3K was inversely correlated (p < 0.05). Additionally, circRNA_100269 was downregulated in GC cells compared with normal gastric epithelial cells. Overexpressed circRNA_100269 remarkably suppressed the proliferation, migration, invasion and EMT of GC cells (p < 0.05), induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis (p < 0.05). In addition, PI3K/Akt signaling was involved in circRNA_100269-mediated proliferation, migration, invasion, EMT and apoptosis in GC cells (p < 0.05). Knockdown of circRNA_100269 also significantly promoted tumor growth in vivo (p < 0.05). Conclusions: the data of the present study suggested that the expression level of circRNA_100269 was decreased in GC tissues and cells. In addition, circRNA_100269 inhibited the progression of GC by suppressing PI3K/Akt signaling. Therefore, circRNA_100269/PI3K/Akt axis may be a potential therapeutic target for GC treatment.


2020 ◽  
Author(s):  
zhongli wang ◽  
chao liu

Abstract Background: The expression of circRNA_100269 in gastric cancer (GC) tissues and cells, together with its regulatory roles on GC cells were investigated. Methods: The levels of circRNA_100269 in GC and matched para-carcinoma tissues, as well as in human GC cell lines and normal gastric epithelial cells were evaluated using RT-qPCR. The models with overexpression or knockdown of circRNA_100269 were generated using lentiviral vectors. Cell viability was examined using MTT assay; cell migration and invasive activity were determined by wound healing and Transwell assay. Cell cycle arrest and apoptosis were assessed; molecules involved in PI3K/Akt signaling, apoptosis and EMT were evaluated using RT-qPCR and immunoblotting. Tumour growth and expression of relevant proteins were examined in circRNA_100269 knockout mice. Results: The results indicated the expression of circRNA_100269 was dramatically decreased in GC samples compared with para-carcinoma tissues (p<0.05), while the levels of PI3K were notably increased (p<0.05). Moreover, the level of circRNA_100269 was relevant to histology grade and occurrence of metastasis in GC patients (p<0.05), where circRNA_100269 and PI3K was inversely correlated (p<0.05). Additionally, circRNA_100269 was downregulated in GC cells compared with normal gastric epithelial cells. Overexpressed circRNA_100269 remarkably suppressed the proliferation, migration, invasion and EMT of GC cells (p<0.05), induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis (p<0.05). In addition, PI3K/Akt signaling was involved in circRNA_100269-mediated proliferation, migration, invasion, EMT and apoptosis in GC cells (p<0.05). Knockdown of circRNA_100269 also significantly promoted tumor growth in vivo (p<0.05). Conclusions: the data of the present study suggested that the expression level of circRNA_100269 was decreased in GC tissues and cells. In addition, circRNA_100269 inhibited the progression of GC by suppressing PI3K/Akt signaling. Therefore, circRNA_100269/PI3K/Akt axis may be a potential therapeutic target for GC treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xinbing Zhu ◽  
Rongnian Li ◽  
Chen Wang ◽  
Shuo Zhou ◽  
Yujia Fan ◽  
...  

The survival rate of breast cancer (BC) patients remains poor, thus the identification of safe and effective new drugs is crucial to improve therapeutic outcomes and overall survival. Pinocembrin (PCB), a pharmacologically active ingredient of Pinus heartwood, Eucalyptus, Euphorbia, Populus, and Sparattosperma leucanthum, has been widely applied for the treatment of various diseases and possesses anticancer activities. In vitro assays were performed to investigate the antiproliferation and antimetastasis activities of PCB in BC cells. A tumorigenesis assay with the use of murine BC models was performed to assess the antiproliferation activities of PCB in vivo. Moreover, the molecular mechanisms underlying the anticancer activities of PCB in BC cells were explored. The results showed that the anti-inhibitory and antiproliferation activities of PCB in BC might involve cell cycle (G2/M phase) arrest and apoptosis. PCB downregulated the expression levels of proteins involved in cell cycle progression and apoptosis, including cyclinB1, Cdc2, PARP1, Bcl-2, and survivin, and upregulated protein levels of cleaved PARP1, cleaved caspase3, cleaved caspase9, and BAX. In a murine subcutaneous tumor model, PCB suppressed the growth of MCF-7 cells in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. Mechanistically, PCB administration was correlated to suppression of the PI3K/AKT signaling pathway. Inhibition of the proliferation of BC cells by PCB involved cell cycle (G2/M phase) arrest and apoptosis in vitro and in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. These findings suggest that PCB might be an effective agent for treatment of BC patients.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


Sign in / Sign up

Export Citation Format

Share Document