scholarly journals Pinocembrin Inhibits the Proliferation and Metastasis of Breast Cancer via Suppression of the PI3K/AKT Signaling Pathway

2021 ◽  
Vol 11 ◽  
Author(s):  
Xinbing Zhu ◽  
Rongnian Li ◽  
Chen Wang ◽  
Shuo Zhou ◽  
Yujia Fan ◽  
...  

The survival rate of breast cancer (BC) patients remains poor, thus the identification of safe and effective new drugs is crucial to improve therapeutic outcomes and overall survival. Pinocembrin (PCB), a pharmacologically active ingredient of Pinus heartwood, Eucalyptus, Euphorbia, Populus, and Sparattosperma leucanthum, has been widely applied for the treatment of various diseases and possesses anticancer activities. In vitro assays were performed to investigate the antiproliferation and antimetastasis activities of PCB in BC cells. A tumorigenesis assay with the use of murine BC models was performed to assess the antiproliferation activities of PCB in vivo. Moreover, the molecular mechanisms underlying the anticancer activities of PCB in BC cells were explored. The results showed that the anti-inhibitory and antiproliferation activities of PCB in BC might involve cell cycle (G2/M phase) arrest and apoptosis. PCB downregulated the expression levels of proteins involved in cell cycle progression and apoptosis, including cyclinB1, Cdc2, PARP1, Bcl-2, and survivin, and upregulated protein levels of cleaved PARP1, cleaved caspase3, cleaved caspase9, and BAX. In a murine subcutaneous tumor model, PCB suppressed the growth of MCF-7 cells in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. Mechanistically, PCB administration was correlated to suppression of the PI3K/AKT signaling pathway. Inhibition of the proliferation of BC cells by PCB involved cell cycle (G2/M phase) arrest and apoptosis in vitro and in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. These findings suggest that PCB might be an effective agent for treatment of BC patients.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Chunqin Meng ◽  
Yuhao Teng ◽  
Xiaodong Jiang

This study aimed to investigate the in vitro and in vivo effects of Raddeanin A on apoptosis and the cell cycle in the human colorectal cell line, HCT116, and to explore the possible underlying mechanisms of action. We found the growth inhibition rate gradually increased as the drug concentration increased via the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, which indicated that Raddeanin A significantly inhibited the growth of HCT116 cells. Flow cytometry (FCM) showed that Raddeanin A concentration-dependently induced apoptosis in HCT116 cells. In addition, the percentage of cells in the G0/G1phase was noticeably increased, which indicated that Raddeanin A blocked cell cycle progression in HCT116 cells and caused arrest in the G0/G1phase. Moreover, the expression of proteins involved in the PI3K/AKT signaling pathway (e.g., p-PI3K and p-AKT) was decreased. The results showed that in vivo revealed that Raddeanin A significantly inhibited tumor growth in an HCT116-xenografted mouse model; apoptotic cells were also detected in the tumor tissue. The expression of the tissue proteins cyclinD1, cyclinE, p-PI3K, and p-AKT was decreased. The above results show that the Raddeanin A exerted a strong antitumor effect in the human colorectal cell line HCT116 both in vitro and in vivo. This effect may be caused by the induction of apoptosis and cycle arrest achieved through PI3K/AKT signaling pathway regulation.


2020 ◽  
Vol 19 ◽  
pp. 153303382096075
Author(s):  
Pihong Li ◽  
Luguang Liu ◽  
Xiangguo Dang ◽  
Xingsong Tian

Background: Cholangiocarcinoma (CCA) is an extremely intractable malignancy since most patients are already in an advanced stage when firstly discovered. CCA needs more effective treatment, especially for advanced cases. Our study aimed to evaluate the effect of romidepsin on CCA cells in vitro and in vivo and explore the underlying mechanisms. Methods: The antitumor effect was determined by cell viability, cell cycle and apoptosis assays. A CCK-8 assay was performed to measure the cytotoxicity of romidepsin on CCA cells, and flow cytometry was used to evaluate the effects of romidepsin on the cell cycle and apoptosis. Moreover, the in vivo effects of romidepsin were measured in a CCA xenograft model. Results: Romidepsin could reduce the viability of CCA cells and induce G2/M cell cycle arrest and apoptosis, indicating that romidepsin has a significant antitumor effect on CCA cells in vitro. Mechanistically, the antitumor effect of romidepsin on the CCA cell lines was mediated by the induction of G2/M cell cycle arrest and promotion of cell apoptosis. The G2/M phase arrest of the CCA cells was associated with the downregulation of cyclinB and upregulation of the p-cdc2 protein, resulting in cell cycle arrest. The apoptosis of the CCA cells induced by romidepsin was attributed to the activation of caspase-3. Furthermore, romidepsin significantly inhibited the growth of the tumor volume of the CCLP-1 xenograft, indicating that romidepsin significantly inhibited the proliferation of CCA cells in vivo. Conclusions: Romidepsin suppressed the proliferation of CCA cells by inducing cell cycle arrest through cdc2/cyclinB and cell apoptosis by targeting caspase-3/PARP both in vitro and in vivo, indicating that romidepsin is a potential therapeutic agent for CCA.


2019 ◽  
Vol 47 (4) ◽  
pp. 1685-1695
Author(s):  
Qiang Li ◽  
Zifan He ◽  
Jiming Liu ◽  
Jianlong Wu ◽  
Guixiang Tan ◽  
...  

Objectives Paris polyphylla 26 (PP-26) is a monomer purified from Paris polyphylla, which has traditionally been used as an antimicrobial, hemostatic, and anticancer agent in China. The anti-proliferation effect and underlying molecular mechanism of PP-26 were investigated in vitro. Methods The effects of PP-26 on various tumor cells were detected by MTT assay. PP-26-affected cell cycle and cell cycle-related proteins in HepG2 cells were detected by flow cytometry and western blotting, respectively. Apoptosis in response to PP-26 was assessed by Hoechst 33258 staining and flow cytometry. PP-26-affected apoptosis-related proteins and Akt signaling were detected by western blotting. The inhibitory effect of PP-26 on HepG2 cells, when combined with 5-fluorouracil (5-FU), was also assessed. Results PP-26 inhibited proliferation of HepG2 cells in a dose-dependent manner by triggering G2/M-phase arrest. Moreover, PP-26 induced apoptosis of HepG2 cells. Expression levels of apoptosis proteins caspase 9, caspase 3, PARP, Bcl-2, Bcl-xL, and Mcl-1 were downregulated, while the expression level of apoptosis protein Bax was upregulated. Expression levels of p-Akt, p-GSK-3β, and p-Foxo3 were downregulated. Combination with PP-26 enhanced 5-FU inhibition of HepG2 cell proliferation. Conclusions PP-26 triggers G2/M-phase arrest and induces apoptosis in HepG2 cells via inhibition of the Akt signaling pathway.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Yang-Hao Yu ◽  
Han-Peng Kuo ◽  
Hui-Hsia Hsieh ◽  
Jhy-Wei Li ◽  
Wu-Huei Hsu ◽  
...  

Ganoderma tsugae(GT) is a traditional Chinese medicine that exhibits significant antitumor activities against many types of cancer. This study investigated the molecular mechanism by which GT suppresses the growth of doxorubicin-resistant lung adenocarcinoma H23/0.3 cells. Our results reveal that GT inhibits the viability of H23/0.3 cellsin vitroandin vivoand sensitizes the growth suppression effect of doxorubicin on H23/0.3 cells. The data also show that GT induces S phase arrest by interfering with the protein expression of cyclin A, cyclin E, CDK2, and CDC25A. Furthermore, GT induces cellular apoptosis via induction of a mitochondria/caspase pathway. In addition, we also demonstrate that the suppression of cell proliferation by GT is through down-regulation of the PI3K/Akt signaling pathway. In conclusion, this study suggests that GT may be a useful adjuvant therapeutic agent in the treatment of lung cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zongxia Wang ◽  
Lizhou Jia ◽  
Yushu sun ◽  
Chunli Li ◽  
Lingli Zhang ◽  
...  

Trophoblast cell surface protein 2 (Trop2) is one of the cancer-related proteins that plays a vital role in biological aggressiveness and poor prognosis of colorectal cancer (CRC). The study of the Trop2 related network is helpful for us to understand the mechanism of tumorigenesis. However, the effects of the related proteins interacting with Trop2 in CRC remain unclear. Here, we found that coronin-like actin-binding protein 1C (CORO1C) could interact with Trop2 and the expression of CORO1C in CRC tissues was higher than that in paracarcinoma tissues. The expression of CORO1C was associated with histological type, lymph node metastasis, distant metastasis, AJCC stage, venous invasion, and perineural invasion. The correlation between CORO1C expression and clinical characteristics was analyzed demonstrating that high CORO1C expression in CRC patients were associated with poor prognosis. Furthermore, CORO1C knockdown could decrease the cell proliferation, colony formation, migration and invasion in vitro and tumor growth in vivo. The underlying mechanisms were predicted by bioinformatics analysis and verified by Western blotting. We found that PI3K/AKT signaling pathway was significantly inhibited by CORO1C knockdown and the tuomr-promoting role of CORO1C was leastwise partly mediated by PI3K/AKT signaling pathway. Thus, CORO1C may be a valuable prognostic biomarker and drug target in CRC patients.


2021 ◽  
pp. 1-11
Author(s):  
Mujie Ye ◽  
Jiajun He ◽  
Jingjing Zhang ◽  
Baihui Liu ◽  
Xiangqi Liu ◽  
...  

BACKGROUND: Hepatoblastoma (HB) is an embryonic solid tumor and the most common primary malignant liver tumor in children. HB usually occurs in infants and children. Although treatment diversity is increasing, some patients still have very poor prognosis. Many studies have investigated USP7 inhibitors for tumors. Using database information, we found that USP7 is highly expressed in HB. METHODS: Lentivirus-mediated USP7 knockdown and overexpression was performed in HB cell lines HepG2 and Huh6. CCK8 and transwell assays were used to determine cell viability and metastasis. Flow cytometry was used to study cell cycle and apoptosis. Levels of proteins were detected using western blots. RESULTS: Downregulation of USP7 resulted in significant decrease in cell proliferation, clonal formation, and cell migration and invasion. With overexpression of USP7, cellular malignant behavior increased. Cell cycle assays showed that USP7 knockdown inhibited G1 to S phase transition in the cell cycle. Upregulation of USP7 promoted the transition. Animal experiments showed USP7 facilitated tumor growth in vivo. Western blots indicated that USP7 may affect HB tumorigenesis through the PI3K/AKT signaling pathway. Furthermore, USP7 inhibitor P5091 inhibited HB development and PI3K/AKT pathway. CONCLUSION: USP7 upregulation contributed to HB genesis and development through the PI3K/AKT signaling pathway. USP7 could be a potential target for future HB treatment.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yeqian Zhang ◽  
Fengrong Yu ◽  
Bo Ni ◽  
Qing Li ◽  
Seong-Woo Bae ◽  
...  

ObjectivesThe noncoding RNAs (ncRNAs) play important roles in gastric cancer. Most studies have focused on the functions and influence of ncRNAs, but seldom on their maturation. DEAD box genes are a family of RNA-binding proteins that may influence the development of ncRNAs, which attracted our attention. By combining a small sample for high-throughput gene microarray screening with large samples of The Cancer Genome Atlas (TCGA) data and our cohort, we aimed to find some gastric cancer-related genes. We evaluated the clinical significance and prognostic value of candidate gene DDX18, which is overexpressed in gastric cancer tissues. To provide a theoretical basis for the development of new therapeutic targets for the treatment of gastric cancer, we investigated its effect on the malignant biological behavior of gastric cancer in vitro and in vivo, and also discuss its mechanism of action.Methods(i) The differential profiling of mRNA expression in five pairs of gastric cancer and adjacent normal tissues was studied by Arraystar Human mRNA Microarray. By combining this with TCGA data and our cohort, we finally filtered out DDX18, which was upregulated in gastric cancer tissues, for further investigation. (ii) The protein expression of DDX18 was detected by immunohistochemistry staining. Then the relationship between the DDX18 expression level and the clinicopathological data and prognosis was analyzed. (iii) A CCK-8 assay and colony formation assay were used to evaluate the effect of DDX18 on cell growth and proliferation in vitro. A transwell assay was also performed to examine the migration and invasion of gastric cancer cells. Cell apoptosis was analyzed by using a fluorescein isothiocyanate–annexin V/propidium iodide double-staining assay. To identify the role of DDX18 in the tumorigenic ability of gastric cancer cells in vivo, we also established a subcutaneous gastric cancer xenograft model. Coimmunoprecipitation, small RNAseq, and western blotting were performed to explore the mechanism of action of DDX18 in gastric cancer. A patient-derived xenograft (PDX) model was used to confirm the effect of DDX18 in gastric cancer tissues.Result(i) DDX18 was upregulated in gastric cancer tumor tissues from a TCGA database and our cohort. The expression of DDX18 was also closely related to tumor volume, Borrmann classification, degree of tumor differentiation, cancer embolus, lymph node metastasis, and TNM stage. (ii) DDX18 could promote cell proliferation, migration, and invasion and inhibit cell apoptosis in vivo and in vitro. (iii) DDX18 could promote the maturation of microRNA-21 through direct interaction with Drosha, decreasing PTEN, which could upregulate the AKT signaling pathway. (iv) The PDX model showed that DDX18 could promote the proliferation of gastric cancer tissues by means of the PTEN–AKT signaling pathway.Conclusions(i) DDX18 can be treated as a molecular marker to assess the prognosis of patients with gastric cancer. (ii) DDX18 could be a potential therapeutic target in gastric cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gaopan Li ◽  
Yuhuan Zhong ◽  
Wenyi Wang ◽  
Xiaokang Jia ◽  
Huaichang Zhu ◽  
...  

The potential antitumor effects of sempervirine (SPV), an alkaloid compound derived from the traditional Chinese medicine Gelsemium elegans Benth., on different malignant tumors were described in detail. The impact of SPV on glioma cells and the basic atomic components remain uncertain. This study aimed to investigate the activity of SPV in vitro and in vivo. The effect of SPV on the growth of human glioma cells was determined to explore three aspects, namely, cell cycle, cell apoptosis, and autophagy. In this study, glioma cells, U251 and U87 cells, and one animal model were used. Cells were treated with SPV (0, 1, 4, and 8 μM) for 48 h. The cell viability, cell cycle, apoptosis rate and autophagic flux were examined. Cell cycle, apoptotic, autophagy, and Akt/mTOR signal pathway-related proteins, such as CDK1, Cyclin B1, Beclin-1, p62, LC3, AKT, and mTOR were investigated by Western blot approach. As a result, cells induced by SPV led to G2/M phase arrest and apoptosis. SPV also promoted the effect of autophagic flux and accumulation of LC3B. SPV reduced the expression of p62 protein and induced the autophagic death of glioma cells. Furthermore, SPV downregulated the expressions of AKT and mTOR phosphorylated proteins in the mTOR signaling pathway, thereby affecting the onset of apoptosis and autophagy in U251 cells. In conclusion, SPV induced cellular G2/M phase arrest and blockade of the Akt/mTOR signaling pathway, thereby triggering apoptosis and cellular autophagy. The in vivo and in vitro studies confirmed that SPV inhibits the growth of glioma cancer.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dongyong Yang ◽  
Yanqing Wang ◽  
Yajing Zheng ◽  
Fangfang Dai ◽  
Shiyi Liu ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-aged women worldwide, however, the mechanisms and progression of PCOS still unclear due to its heterogeneous nature. Using the human granulosa-like tumor cell line (KGN) and PCOS mice model, we explored the function of lncRNA UCA1 in the pathological progression of PCOS. Results CCK8 assay and Flow cytometry were used to do the cell cycle, apoptosis and proliferation analysis, the results showed that UCA1 knockdown in KGN cells inhibited cell proliferation by blocking cell cycle progression and promoted cell apoptosis. In the in vivo experiment, the ovary of PCOS mice was injected with lentivirus carrying sh-UCA1, the results showed that knockdown of lncRNA UCA1 attenuated the ovary structural damage, increased the number of granular cells, inhibited serum insulin and testosterone release, and reduced the pro-inflammatory cytokine production. Western blot also revealed that UCA1 knockdown in PCOS mice repressed AKT activation, inhibitor experiment demonstrated that suppression of AKT signaling pathway, inhibited the cell proliferation and promoted apoptosis. Conclusions Our study revealed that, in vitro, UCA1 knockdown influenced the apoptosis and proliferation of KGN cells, in vivo, silencing of UCA1 regulated the ovary structural damage, serum insulin release, pro-inflammatory production, and AKT signaling pathway activation, suggesting lncRNA UCA1 plays an important role in the pathological progression of PCOS.


Sign in / Sign up

Export Citation Format

Share Document