scholarly journals Polymer Concentration and Solvent Variation Correlation with the Morphology and Water Filtration Analysis of Polyether Sulfone Microfiltration Membrane

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Azeem U. R. Alvi ◽  
Muhammad Waqas Khalid ◽  
Nasir M. Ahmad ◽  
Muhammad Bilal K. Niazi ◽  
Muhammad Nabeel Anwar ◽  
...  

Microfiltration flat sheet membranes of polyether sulfone (PES) were fabricated by incorporating varying concentrations of polymer and investigated the influence of substituting solvents. The membranes were prepared via immersion precipitation method. Different solvents that included NMP (N-methyl-2-pyrrolidone), DMF (dimethylformamide), and THF (tetrahydrofuran) were used to analyse their effect on the performance and morphology of the prepared membranes. Two different coagulation bath temperatures were used to investigate the kinetics of membrane formation and subsequent effect on membrane performance. The maximum water flux of 141 ml/cm2.h was observed using 21% of PES concentration in NMP + THF cosolvent system. The highest tensile strength of 29.15 MPa was observed using membrane prepared with 21% PES concentration in NMP as solvent and coagulation bath temperature of 25°C. The highest hydraulic membrane resistance was reported for membrane prepared with 21% PES concentration in NMP as solvent. Moreover, the lowest contact angle of 67° was observed for membrane prepared with 15% of PES concentration in NMP as solvent with coagulation bath temperature of 28°C. Furthermore, the Hansen solubility parameter was used to study the effect on the thermodynamics of membrane formation and found to be in good correlation with experimental observation and approach in the present work.

Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 87 ◽  
Author(s):  
Daria Nevstrueva ◽  
Arto Pihlajamäki ◽  
Juha Nikkola ◽  
Mika Mänttäri

Supported cellulose ultrafiltration membranes are cast from a cellulose-ionic liquid solution by the immersion precipitation technique. The effects of coagulation bath temperature and polymer concentration in the casting solution on the membrane morphology, wettability, pure water flux, molecular weight cut-off, and fouling resistance are studied. Scanning electron microscopy, contact angle measurements, atomic force microscopy, and filtration experiments are carried out in order to characterise the obtained ultrafiltration cellulose membranes. The results show the effect of coagulation bath temperature and polymer concentration on the surface morphology and properties of cellulose ultrafiltration membranes. Optimisation of the two parameters leads to the creation of dense membranes with good pure water fluxes and proven fouling resistance towards humic acid water solutions.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhao-Hui Jiang ◽  
Chang-Fa Xiao ◽  
Xiao-Yu Hu

AbstractHollow fiber membranes of polyamide-6(PA6) with porous structure were prepared by a thermally induced phase-separation method. N-Ethyl-o/p-toluene sulfonamide was chosen as diluent. On the basis of scanning electron microscopy (SEM) images, porosity, bubble point pore diameter and pure water flux, the influential factors including polymer concentration, coagulation bath temperature, post-stretching were investigated. The results indicate that with the increasing of PA6 concentration ‘slit-shaped’ pores in inner surfaces and cellular structure in cross-sections disappear, correspondingly, the properties of membranes such as porosity and pure water flux become poor. As the coagulation bath temperature varied from 20 °C to 50°C, the pure water flux of membranes is improved from 136 to 244 L·m-2·h-1. Post-stretching make the ‘interfacial micro-pores’ expand due to ‘stress concentration’ phenomenon, thus changing the structure and improving the properties of membranes. PA6 hollow fiber membranes with rational structure and high performance could be obtained by altering polymer concentration, coagulation bath temperature and post-stretching.


2014 ◽  
Vol 789 ◽  
pp. 240-248 ◽  
Author(s):  
Xiao Hui Cao ◽  
Ming Qiu ◽  
Ai Wen Qin ◽  
Chun Ju He ◽  
Hai Feng Wang

Poly (vinylidene fluoride) membranes were prepared from the ternary mixture of PVDF/ 1, 2 - propylene glycol/dimethylacetamidevianon-solvent induced phase separation (NIPS). The effect of the addition of the 1, 2 - propylene glycol content, the Coagulation Bath Temperature and the concentration of PVDF on the performance and structure of the PVDF membranes was studied in the present investigation.The results showed that with increasing polymer concentration, the mechanical strength increased,and the structure of membrane changed from finger-like macro-voids structureto sponge-like structure.It was found that water flux, breaking elongation and tensile strength of the membrane increased with increasing 1, 2 - propylene glycol content, when the content reached 41wt.%, the water flux reaches a maximum.The morphology of PVDF can be improved by the addition of 1, 2 - propylene glycol, which was changed from finger-like structure to sponge-like structure. And the dense skin layer of PVDF membranes became thicker with increasing 1, 2 – propyleneglycol. The tensile strength decreasedfrom 3.3 to 2.1MPa, breaking elongation decreased from 315% to 280% andthe pure water flux increased from 91 to 909 L·m-2·h-1. as the coagulation bath temperature (CBT) decreased from 30°C to 5°C.With this condition, the sponge-like hollow fiber membrane hassuccessfully spun.


2015 ◽  
Vol 713-715 ◽  
pp. 2723-2726
Author(s):  
Yue Rong Shi ◽  
Gui Fang Zhang ◽  
Xing Tian Liu ◽  
Xue Tao Tian ◽  
Yi Ping Zhao ◽  
...  

In this study, poly (vinylidene fluoride) (PVDF) hybrid membranes were prepared from polymeric blend of PVDF/tannic acid (TA)-Attapulgite (ATP)/PEG system via phase inversion induced by immersion precipitation in water coagulation bath. The membrane formation mechanism of PVDF/TA-ATP/PEG casting solutions in water bath thermodynamics at different temperatures and the process of membrane formation were investigated via cloud point determination and ultrasonic time-domain reflectometry (UTDR). The structures and properties of the membrane were characterized by scanning electron microscopy (SEM), and water permeation experiment, respectively. It was found that the rate of precipitation controlled by the Coagulation-Bath thermodynamics. With the coagulation temperature increasing, the gelation line was moved to non-solvent axis and the pure water flux were decreased.


2011 ◽  
Vol 418-420 ◽  
pp. 169-172
Author(s):  
Shan Zhang ◽  
Zhen Liu

The Polysulfone Flat ultrafiltration membranes were prepared with dimethylacetamide (DMAc) as solvent and polyvinypyrrolidone (PVP) as pore forming additive. Performance of PSF membrane such as pure water flux, albumin egg rejection were investigated. In addition, the same investigations were conducted with different coagulation bath temperature and evaporation time. The results show that there were a maximum of pure water flux and a minimum of the retention of Albumin when PVP content reach 14%.


2012 ◽  
Vol 18 (3) ◽  
pp. 385-398 ◽  
Author(s):  
Reza Abedini ◽  
Mahmoud Mousavi ◽  
Reza Aminzadeh

In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.%) and coagulation bath temperature (CBT= 25?C, 50?C and 75?C) on morphology, thermal stability and pure water flux (PWF) of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC), membrane porosity and pure water flux (PWF), also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA) shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td) of hybrid membranes.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Hui Li ◽  
Guo-li Gong ◽  
Tai-sheng Gong

Abstract A series of blend membranes were prepared by immersion precipitation phase inversion method using hydroxypropylcellulose and polyacrylonitrile as raw materials. The effects of casting conditions on membrane’s characterization were studied. The properties of resulting blend membranes were that water flux decreased from 489 L·h-1·m-2 to 312 L·h-1·m-2 ; retention rate increased from 80.1% to 91.8%; and corresponding porosity presented increasing trend but changed little within the range of casting solution concentrations from 10 wt % to 16 wt %. The greater the mass fraction of HPC in casting solution, the greater the water flux of blend membranes. Prolonging the atmosphere exposing time, water flux increased from 268 L·h-1·m-2 about 20s to 372 L·h-1·m-2 about 60 s, then decreased to 340 L·h-1·m-2 about 75s. In addition, retention rate decreased from 91.2% to 81.3%. Porosity tend to decrease but changed a little. With the coagulation bath temperature rising, water flux of blend membranes increased from 306 L·h-1·m-2 about 20 0C to 429 L·h-1·m-2 about 35 0C, and corresponding retention rate decreased from 87.9% to 82.5%, porosity decreased from 80.23% to 68.26%.


2015 ◽  
Vol 713-715 ◽  
pp. 2681-2684
Author(s):  
Xiao Tong Liang ◽  
Meng Xin Gu ◽  
Jin Ling Li ◽  
Xue Wang ◽  
Yi Ping Zhao ◽  
...  

In this work, poly (vinylidene fluoride)-graft-poly (N-isopropylacrylamide) (PVDF-g-PNIPAAm) thermo-sensitive polymer and poly (NIPAAm-co-AAc-L-Phe) chiral micro-gels were synthesized firstly. A chiral thermo-sensitive membrane for phenylalanine separation of the racemic mixture was prepared by phase inversion method with the blend of poly (NIPAAm-co-AAc-L-Phe) and PVDF-g-PNIPAAm. The blend membrane formation mechanism of the casting solutions in water bath thermodynamics at different temperatures and the process of membrane formation were investigated via cloud point determination and ultrasonic time-domain reflectometry (UTDR). The results showed that the inversion between hydrophilicity and hydrophobicity of PNIPAAm contributed to the membrane formation process. From the time needed in membrane forming recorded by ultrasonic signal spectra, it can be found that the speed for solidification was increased when the coagulation-bath temperature was higher than 30°C.


Sign in / Sign up

Export Citation Format

Share Document