scholarly journals Malware Detection Based on Deep Learning of Behavior Graphs

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Xiao ◽  
Zhaowen Lin ◽  
Yi Sun ◽  
Yan Ma

The Internet of Things (IoT) provides various benefits, which makes smart device even closer. With more and more smart devices in IoT, security is not a one-device affair. Many attacks targeted at traditional computers in IoT environment may also aim at other IoT devices. In this paper, we consider an approach to protect IoT devices from being attacked by local computers. In response to this issue, we propose a novel behavior-based deep learning framework (BDLF) which is built in cloud platform for detecting malware in IoT environment. In the proposed BDLF, we first construct behavior graphs to provide efficient information of malware behaviors using extracted API calls. We then use a neural network-Stacked AutoEncoders (SAEs) for extracting high-level features from behavior graphs. The layers of SAEs are inserted one after another and the last layer is connected to some added classifiers. The architecture of the SAEs is 6,000-2,000-500. The experiment results demonstrate that the proposed BDLF can learn the semantics of higher-level malicious behaviors from behavior graphs and further increase the average detection precision by 1.5%.

2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Ritu Chauhan ◽  
Gatha Tanwar

The internet of things has brought in innovations in the daily lives of users. The enthusiasm and openness of consumers have fuelled the manufacturers to dish out new devices with more features and better aesthetics. In an attempt to keep up with the competition, the manufacturers are not paying enough attention to cyber security of these smart devices. The gravity of security vulnerabilities is further aggravated due to their connected nature. As a result, a compromised device would not only stop providing the intended service but could also act as a host for malware introduced by an attacker. This study has focused on 10 manufacturers, namely Fitbit, D-Link, Edimax, Ednet, Homematic, Smarter, Osram, Belkin Wemo, Philips Hue, and Withings. The authors studied the security issues which have been raised in the past and the communication protocols used by devices made by these brands. It was found that while security vulnerabilities could be introduced due to lack of attention to details while designing an IoT device, they could also get introduced by the protocol stack and inadequate system configuration. Researchers have iterated that protocols like TCP, UDP, and mDNS have inherent security shortcomings and manufacturers need to be mindful of the fact. Furthermore, if protocols like EAPOL or Zigbee have been used, then the device developers need to be aware of safeguarding the keys and other authentication mechanisms. The authors also analysed the packets captured during setup of 23 devices by the above-mentioned manufacturers. The analysis gave insight into the underlying protocol stack preferred by the manufacturers. In addition, they also used count vectorizer to tokenize the protocols used during device setup and use them to model a multinomial classifier to identify the manufacturers. The intent of this experiment was to determine if a manufacturer could be identified based on the tokenized protocols. The modelled classifier could then be used to drive an algorithm to checklist against possible security vulnerabilities, which are characteristic of the protocols and the manufacturer history. Such an automated system will be instrumental in regular diagnostics of a smart system. The authors then wrapped up this report by suggesting some measures a user can take to protect their local networks and connected devices.


2020 ◽  
Vol 21 (15) ◽  
pp. 5222 ◽  
Author(s):  
Xiao-Nan Fan ◽  
Shao-Wu Zhang ◽  
Song-Yao Zhang ◽  
Jin-Jie Ni

Long non-coding RNAs (lncRNAs) play crucial roles in diverse biological processes and human complex diseases. Distinguishing lncRNAs from protein-coding transcripts is a fundamental step for analyzing the lncRNA functional mechanism. However, the experimental identification of lncRNAs is expensive and time-consuming. In this study, we presented an alignment-free multimodal deep learning framework (namely lncRNA_Mdeep) to distinguish lncRNAs from protein-coding transcripts. LncRNA_Mdeep incorporated three different input modalities, then a multimodal deep learning framework was built for learning the high-level abstract representations and predicting the probability whether a transcript was lncRNA or not. LncRNA_Mdeep achieved 98.73% prediction accuracy in a 10-fold cross-validation test on humans. Compared with other eight state-of-the-art methods, lncRNA_Mdeep showed 93.12% prediction accuracy independent test on humans, which was 0.94%~15.41% higher than that of other eight methods. In addition, the results on 11 cross-species datasets showed that lncRNA_Mdeep was a powerful predictor for predicting lncRNAs.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2830
Author(s):  
Mitra Pooyandeh ◽  
Insoo Sohn

The network edge is becoming a new solution for reducing latency and saving bandwidth in the Internet of Things (IoT) network. The goal of the network edge is to move computation from cloud servers to the edge of the network near the IoT devices. The network edge, which needs to make smart decisions with a high level of response time, needs intelligence processing based on artificial intelligence (AI). AI is becoming a key component in many edge devices, including cars, drones, robots, and smart IoT devices. This paper describes the role of AI in a network edge. Moreover, this paper elaborates and discusses the optimization methods for an edge network based on AI techniques. Finally, the paper considers the security issue as a major concern and prospective approaches to solving this issue in an edge network.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-25
Author(s):  
Shafagat Mahmudova

This article outlines the Internet of Things (IoT). The Internet of Things describes a network of physical objects, i.e., the “thing” including sensors, software, and other technologies for connection and data sharing with other devices and systems over the Internet. In other words, IoT is a relatively new technology enabling many “smart” devices to get connected, to analyze, process, and transfer data to each other and connect to a network. The article clarifies the essence of intelligent systems for the Internet of Things, and analyzes the most popular software for the IoT platform. It studies high-level systems for IoT and analyzes available literature in this field. It highlights most advanced IoT software of 2021. The article also identifies the prospects and challenges of intelligent systems for the Internet of Things. The creation of new intelligent systems for IoT and the development of technology will greatly contribute to the development of economy.


Author(s):  
Min Zeng ◽  
Yifan Wu ◽  
Chengqian Lu ◽  
Fuhao Zhang ◽  
Fang-Xiang Wu ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) are a class of RNA molecules with more than 200 nucleotides. A growing amount of evidence reveals that subcellular localization of lncRNAs can provide valuable insights into their biological functions. Existing computational methods for predicting lncRNA subcellular localization use k-mer features to encode lncRNA sequences. However, the sequence order information is lost by using only k-mer features. We proposed a deep learning framework, DeepLncLoc, to predict lncRNA subcellular localization. In DeepLncLoc, we introduced a new subsequence embedding method that keeps the order information of lncRNA sequences. The subsequence embedding method first divides a sequence into some consecutive subsequences and then extracts the patterns of each subsequence, last combines these patterns to obtain a complete representation of the lncRNA sequence. After that, a text convolutional neural network is employed to learn high-level features and perform the prediction task. Compared with traditional machine learning models, popular representation methods and existing predictors, DeepLncLoc achieved better performance, which shows that DeepLncLoc could effectively predict lncRNA subcellular localization. Our study not only presented a novel computational model for predicting lncRNA subcellular localization but also introduced a new subsequence embedding method which is expected to be applied in other sequence-based prediction tasks. The DeepLncLoc web server is freely accessible at http://bioinformatics.csu.edu.cn/DeepLncLoc/, and source code and datasets can be downloaded from https://github.com/CSUBioGroup/DeepLncLoc.


2020 ◽  
Author(s):  
Xiao-Nan Fan ◽  
Shao-Wu Zhang ◽  
Song-Yao Zhang ◽  
Jin-Jie Ni

Abstract Background: Long non-coding RNAs (lncRNAs) play crucial roles in diverse biological processes and human complex diseases. Distinguishing lncRNAs from protein-coding transcripts is a fundamental step for analyzing lncRNA functional mechanism. However, the experimental identification of lncRNAs is expensive and time-consuming. Results: In this study, we present an alignment-free multimodal deep learning framework (namely lncRNA_Mdeep) to distinguish lncRNAs from protein-coding transcripts. LncRNA_Mdeep incorporates three different input modalities (i.e. OFH modality, k-mer modality, and sequence modality), then a multimodal deep learning framework is built for learning the high-level abstract representations and predicting the probability whether a transcript is lncRNA or not. Conclusions: LncRNA_Mdeep achieves 98.73% prediction accuracy in 10-fold cross-validation test on human. Compared with other eight state-of-the-art methods, lncRNA_Mdeep shows 93.12% prediction accuracy independent test on human, which is 0.94%~15.41% higher than that of other eight methods. In addition, the results on 11 cross-species datasets show that lncRNA_Mdeep is a powerful predictor for identifying lncRNAs. The source code can be downloaded from https://github.com/NWPU-903PR/lncRNA_Mdeep.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


Sign in / Sign up

Export Citation Format

Share Document