scholarly journals Simultaneous Determination of Several Fiber Contents in Blended Fabrics by Near-Infrared Spectroscopy and Multivariate Calibration

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

The qualitative and quantitative determination of the components of textile fibers takes an important position in quality control. A fast and nondestructive method of simultaneously analyzing four fiber components in blended fabrics was studied by near-infrared (NIR) spectroscopy combined with multivariate calibration. Two sample sets including 39 and 25 samples were designed by simplex mixture lattice design methods and used for experiment. Four components include wool, polyester, polyacrylonitrile, and nylon and their mixture is one of the most popular formulas of textiles. Uninformative variable elimination-partial least squares (UVEPLS) and the full-spectrum partial least squares (PLS) were used as the tool. On the test set, the mean standard error of prediction (SEP) and the mean ratio of the standard deviation of the response variable and SEP (RPD) of the full-spectrum PLS model and UVEPLS model were 0.38, 0.32 and 7.6, 8.3, respectively. This result reveals that the UVEPLS can construct local models with acceptable and better performance than the full-spectrum PLS. It indicates that this method is valuable for nondestructive analysis in the field of wool content detection since it can avoid time-consuming, costly, and laborious wet chemical analysis.


2003 ◽  
Vol 11 (3) ◽  
pp. 211-218 ◽  
Author(s):  
Juliana Paschoal ◽  
Fernando D. Barboza ◽  
Ronei J. Poppi

The feasibility of using near infrared (NIR) transmission spectroscopy for rapid and conclusive determination of contaminants in lubricant oil was investigated. The NIR spectrum in the region from 1300 to 1700 nm was used to predict gasoline and ethylene glycol concentrations present in lubricant oil. A graphically-oriented local multivariate calibration modelling procedure called interval partial least-squares (iPLS) was applied to find variable intervals that featured the lowest prediction error. When compared with the full spectrum PLS model, better results were obtained through the iPLS program. High correlation coefficients and low root mean square errors of cross-validation ( RMSECV) were obtained for gasoline ( R = 0.98, RMSECV = 0.38%, range = 0.2–8.0% w/w) and ethylene glycol determinations ( R = 0.97, RMSECV = 0.04%, range = 0.06 to 0.7% w/w), indicating that the proposed methodology can be used for contaminant determinations in lubricant oil.



2000 ◽  
Vol 54 (2) ◽  
pp. 294-299 ◽  
Author(s):  
Songbiao Zhang ◽  
Babs R. Soller ◽  
Shubjeet Kaur ◽  
Kristen Perras ◽  
Thomas J. Vander Salm

Hematocrit (Hct), the volume percent of red cells in blood, is monitored routinely for blood donors, surgical patients, and trauma victims and requires blood to be removed from the patient. An accurate, noninvasive method for directly measuring hematocrit on patients is desired for these applications. The feasibility of noninvasive hematocrit measurement by using near-infrared (NIR) spectroscopy and partial least-squares (PLS) techniques was investigated, and methods of in vivo calibration were examined. Twenty Caucasian patients undergoing cardiac surgery on cardiopulmonary bypass were randomly selected to form two study groups. A fiber-optic probe was attached to the patient's forearm, and NIR spectra were continuously collected during surgery. Blood samples were simultaneously collected and reference Hct measurements were made with the spun capillary method. PLS multivariate calibration techniques were applied to investigate the relationship between spectral and Hct changes. Single patient calibration models were developed with good cross-validated estimation of accuracy (∼ 1 Hct%) and trending capability for most patients. Time-dependent system drift, patient temperature, and venous oxygen saturation were not correlated with the hematocrit measurements. Multi-subject models were developed for prediction of independent subjects. These models demonstrated a significant patient-specific offset that was shown to be partially related to spectrometer drift. The remaining offset is attributed to the large spectral variability of patient tissue, and a significantly larger set of patients would be required to adequately model this variability. After the removal of the offset, the cross-validated estimation of accuracy is 2 Hct%.



Author(s):  
Ph. Vermeulen ◽  
P. Flémal ◽  
O. Pigeon ◽  
P. Dardenne ◽  
J. Fernández Pierna ◽  
...  

Classical chromatographic methods, such as ultra performance liquid chromatography (UPLC), are used as reference methods to assess seed quality and homogeneous pesticide coating of seeds. These methods have some important drawbacks since they are time consuming, expensive, destructive and require a substantial amount of solvent, among others. Near infrared (NIR) spectroscopy seems to be an interesting alternative technique for the determination of the quality of seed treatment and avoids most of these drawbacks. The objective of this study was to assess the quality of pesticide coating treatment by near infrared hyperspectral imaging (NIR-HSI) by analysing, on a seed-by-seed basis, several seeds simultaneously in comparison to NIR spectroscopy and UPLC as the reference method. To achieve this goal, discrimination—partial least squares discriminant analysis (PLS-DA)—models and regression—partial least squares (PLS)—models were developed. The results obtained by NIR-HSI are compared to the results obtained with NIR spectroscopy and UPLC instruments. This study has shown the potential of NIR hyperspectral imaging to assess the quality/homogeneity of the pesticide coating on seeds.



2011 ◽  
Vol 8 (4) ◽  
pp. 1670-1679 ◽  
Author(s):  
Amir H. M. Sarrafi ◽  
Elahe Konoz ◽  
Maryam Ghiyasvand

Resolution of binary mixture of atorvastatin (ATV) and amlodipine (AML) with minimum sample pretreatment and without analyte separation has been successfully achieved using a rapid method based on partial least square analysis of UV–spectral data. Multivariate calibration modeling procedures, traditional partial least squares (PLS-2), interval partial least squares (iPLS) and synergy partial least squares (siPLS), were applied to select a spectral range that provided the lowest prediction error in comparison to the full-spectrum model. The simultaneous determination of both analytes was possible by PLS processing of sample absorbance between 220-425 nm. The correlation coefficients (R) and root mean squared error of cross validation (RMSECV) for ATV and AML in synthetic mixture were 0.9991, 0.9958 and 0.4538, 0.2411 in best siPLS models respectively. The optimized method has been used for determination of ATV and AML in amostatin commercial tablets. The proposed method are simple, fast, inexpensive and do not need any separation or preparation methods.



2007 ◽  
Vol 15 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Zou Xiaobo ◽  
Li Yanxiao ◽  
Zhao Jiewen

A near infrared (NIR) spectroscopy acquisition device was developed in this study using an apple as the test sample. With this device, the apple was rolled while collecting the NIR spectra. The feasibility of using efficient selection of wavelength regions in Fourier transform NIR for a rapid and conclusive determination of the inner qualities of fruit such as soluble solids content (SSC) of apples was investigated. Graphically-oriented local multivariate calibration modelling procedures called genetic algorithm interval partial least-squares (GA-iPLS) were applied to select efficient spectral regions that provide the lowest prediction error, in comparison to the full-spectrum model. The optimal SSC predictions were obtained from a seven-factor model using five intervals among 40 intervals selected by GA-iPLS. In the determination, a root mean square error of prediction of 0.42 °Brix for SSC of apples was obtained. The result demonstrated that the new method is a very useful and effective method for developing high precision PLS models based on optimal wavelength regions.



1995 ◽  
Vol 353 (2) ◽  
pp. 211-214 ◽  
Author(s):  
Arsenio Muñoz de la Peña ◽  
Isabel Durán-Merás ◽  
María D. Moreno ◽  
Francisco Salinas ◽  
María Martínez Galera


2017 ◽  
Vol 62 (2) ◽  
pp. 3472-3477 ◽  
Author(s):  
MARIEL MONRROY ◽  
DEHYLIS GUTIÉRREZ ◽  
MARISSA MIRANDA ◽  
KARLA HERNÁNDEZ ◽  
JOSÉ RENÁN GARCÍA


2012 ◽  
Vol 236-237 ◽  
pp. 83-88 ◽  
Author(s):  
Wei Qiang Luo ◽  
Hai Qing Yang ◽  
Wei Cheng Dai

Ultra-violet, visible and near infrared (UV-VIS-NIR) spectroscopy combined with chemometrics was investigated for fast determination of soluble solids content (SSC) of tea beverage. In this study, a total of 120 tea samples with SSC range of 4.0-9.5 ºBrix were tested. Samples were randomly divided for calibration (n=90) and independent validation (n=30). Spectra were collected by a mobile fiber-type UV-VIS-NIR spectrophotometer in transmission mode with recorded wavelength range of 203.64-1128.05 nm. Various calibration approaches, i.e., principal components analysis (PCA), partial least squares (PLS) regression, least squares support vector machine (LSSVM) and back propagation artificial neural network (BPANN), were investigated. The combinations of PCA-BPANN, PCA-LSSVM, PLS-BPANN and PLS-LSSVM were also investigated to build calibration models. Validation results indicated that all these investigated models achieved high prediction accuracy. Especially, PLS-LSSVM achieved best performance with mean coefficient of determination (R2) of 0.99, root-mean-square error of prediction (RMSEP) of 0.12 and residual prediction deviation (RPD) of 15.16. This experiment suggests that it is feasible to measure SSC of tea beverage using UV-VIS-NIR spectroscopy coupled with appropriate multivariate calibration, which may allow using the proposed method for off-line and on-line quality supervision in the production of soft drink.



Sign in / Sign up

Export Citation Format

Share Document