scholarly journals Study on the Permeability of Weakly Cemented Sandstones

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
XianZhou Lyu ◽  
Zenghui Zhao ◽  
Xiaojie Wang ◽  
Weiming Wang

Fractured rocks are a type of complex media that widely exist in various projects including energy, hydraulic, and underground space engineering, whose permeability properties are a hotspot in current rock mechanics domain. Aiming at investigating the seepage characteristics of the fracture surfaces in different rock strata, uniaxial compressive test and permeability test were performed on single-fracture homogenous and heterogeneous rocks. Specifically, rock’s physical and mechanical parameters were measured in uniaxial tests while the initial width of the single fracture was determined through CT scanning. In combination with test results and the calculation model of the displacement of single-fracture heterogeneous rock under triaxial stress condition, the calculation formula of the permeability coefficient of single-fracture heterogeneous rock was derived. Results show that hydraulic pressure in the fracture can affect the permeability coefficient of the fractured rock. Hydraulic fracturing effect occurred with the increase of hydraulic pressure in the fracture, which then generates slight normal deformations of the rock masses on both two sides of the fracture surface, decreases the contact area in the fracture, and leads to the increases of both fracture width and permeability coefficient. For single-fracture rock, the lithological properties of the rock masses on both two sides of the fracture surface impose significant effects on the permeability coefficient. Under same hydraulic pressure and confining pressure, the permeability coefficient of single-fracture coarse sandstone is greatest, followed by that of single-fracture heterogeneous rock, and finally by single-fracture fine sandstone. Theoretical calculation results agree well with the test results, suggesting that the derived theoretical formula can adequately describe the variation tendencies of permeability coefficient with confining pressure and hydraulic pressure in the fracture.

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Shengtong Di ◽  
Chao Jia ◽  
Weiguo Qiao ◽  
Weijiang Yu ◽  
Kang Li

Based on the results of the test among the joint roughness coefficient (JRC) of rock fracture, mechanical aperture, and hydraulic aperture proposed by Barton, this paper deduces and proposes a permeability coefficient formula of single fracture stress-seepage coupling considering microroughness by the introduction of effect variables considering the microparticle size and structural morphology of facture surface. Quasi-sandstone fracture of different particle size is made by the laboratory test, and the respective modification is made on the coupled shear-seepage test system of JAW-600 rock. Under this condition, the laboratory test of stress-seepage coupling of fracture of different particle size is carried out. The test results show that, for the different particle-sized fracture surface of the same JRC, the permeability coefficient is different, which means the smaller particle size, the smaller permeability coefficient, and the larger particle size, the larger permeability coefficient; with the increase of cranny hydraulic pressure, the permeability coefficient increases exponentially, and under the same cranny hydraulic pressure, there is relation of power function between the permeability coefficient and normal stress. Meanwhile, according to the theoretical formula, the microroughness coefficient of the fractures with different particle size is obtained by the calculation, and its accuracy and validity are verified by experiments. The theoretical verification values are in good agreement with the measured values.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haopeng Jiang ◽  
Annan Jiang

To explore the seepage characteristics of cut-through fractured rocks after different temperatures, sandstone in the Hunan area was selected as the research object. First, the influence degree of different temperatures on the permeability of fractured sandstone was studied, and the permeability variation of fractured sandstone with net confining pressure was revealed. The test data was nonlinearly fitted to prove that the relationship between permeability and net confining pressure conforms to the characteristics of the negative exponential function. Second, the macroscopic fractured state of sandstone after different temperature treatments was analyzed, and it is concluded that the inclination angle of the fracture surface decreases with the applied thermal temperature, the fracture surface gradually develops into a single shear failure surface, and the damage degree becomes more and more serious. Finally, the theoretical formula for the calculation of fractured seepage was introduced, and the FLAC3D embedded fish language was used to compile the seepage-stress coupling calculation program of the fractured sandstone after different temperature treatments. Numerical calculations were carried out based on samples with different fracture angles of fractured sandstone, and the calculated values were in good agreement with the test results. The research results can provide guiding significance for the research on the influence of high temperature in fire tunnel on the evolution of permeability of surrounding rock fissures.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Bowen Liu ◽  
Junbin Chen ◽  
Xinpin Ding

According to the relationship between permeability and porosity of geotechnical materials, a finite element model representing pore and solid particles is generated randomly according to the porosity of a given finite element calculation model. According to Darcy’s law of flow distribution and steady seepage in the finite element random simulation section, the equivalent permeability coefficients at different porosities are calculated, and the relationship between the equivalent permeability coefficient and the porosity of rock and soil is studied. The results show that the equivalent permeability coefficient is proportional to the porosity with the same pore size. In order to study the seepage characteristics of structural planes of nonmaterial geotechnical materials in different strata contact zones, the formulas for calculating the deformation parameters and permeability coefficients of heterogeneous rock masses with single nonmaterial geotechnical materials are deduced theoretically, and the correctness and applicability of the formulas are verified by experiments. The rock mass sample selected in this paper is granite, which is simulated and analyzed by sandstone in the experiment. The results show that the permeability coefficients of coarse sandstone, fine sandstone, and heterogeneous rock mass are different under the same water pressure and confining pressure. This shows that the lithology on both sides of the nonmaterial geotechnical material surface has a significant influence on the permeability of the nonmaterial geotechnical material rock mass; the permeability coefficient of the nonmaterial geotechnical material rock mass decreases with the increase of confining pressure, the numerical change is limited to a certain confining pressure range, and the permeability coefficient tends to be stable when the confining pressure reaches a certain value. Comparing the theoretical calculation value of permeability coefficient of rock mass with the experimental result, it is found that the two values are in good agreement, which indicates the correctness and applicability of the theoretical calculation formula of permeability coefficient of rock mass of single intangible geotechnical material.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaoxi Men ◽  
Jiaxu Jin

Joints are a common structure of heterogeneous shale rock masses, and in situ stress is the environment in which heterogeneous rock masses can be found. The existence of joint plane and confining pressure difference influences the physical properties of shale and propagation of fractures. In this study, jointed shale specimens were simulated under different confining pressures to explore the failure patterns and fracture propagation behavior of hydraulic fracturing. Different from the common research of hydraulic fracturing on signal parallel joint rock mass, the simulations in this study considered three points (parallel joint, multi-dip angle joint, and no-joint points). The effects of the single-dip angle joint, multi-dip angle joint, and confining pressure difference on the hydraulic fracture evolution and stress evolution of the jointed shale were studied comprehensively. The confining pressure difference coefficient proposed in this study was used to accurately describe the confining pressure difference. Results indicate that the larger is the confining pressure difference, the stronger is the control of the maximum principal stress on fracture evolution; by contrast, the smaller is the confining pressure difference, the stronger is the control of the joint plane on fracture evolution. Under the same confining pressure difference, the hydraulic fracture propagates more easily along the small dip angle joint plane. As the value of the confining pressure difference coefficient moves closer to zero, the hydraulic fracture propagates randomly, the tensile stress region around the fracture tip widens, and the joint planes fractured by tensile increase. This study can offer valuable guidance to the design of unconventional reservoir reconstruction.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Long Tan ◽  
Wei Xiang ◽  
Jin Luo ◽  
Qingbing Liu ◽  
Xu Zuo

When only limited borehole data are available, making optimum use of the existing data is crucial for performing a preliminary assessment of the investigated site. In this paper, the relationships between the borehole data and the permeability coefficient were first analyzed. These relationships were then used to establish a model for estimating the permeability coefficient of rock mass that takes into account the influence from the confining pressure on the seepage flow. The proposed model can reduce the number of hydraulic tests which are time consuming and very costly and allow the determination of change in the permeability coefficient throughout the borehole. The flow model could assist in providing important references for selecting an appropriate permeability coefficient in hydrogeological simulation and in evaluating the condition of large cracks developed in boreholes. In general, the seepage flow model developed in this study will contribute to the design practice of a tunnel project constructed in fractured rock masses.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
JianChao Cheng ◽  
YanLin Zhao ◽  
Yang Li ◽  
Tao Tan ◽  
Le Chang

In this paper, the transient pulse test is used to study the permeability and hydromechanical coupling effect of the fractured limestone. The permeability parameters (permeability, β factor of non-Darcy flow, and acceleration coefficient) of non-Darcy flow in fractured limestone are obtained by experimental data. The experimental results show that, in the process of transient seepage test of fractured Maokou limestone, the relationship between hydraulic pressure gradient and seepage velocity does not conform to Darcy’s law but meets Forchimer relationship. The relationship between hydraulic pressure difference and time can be fitted by quartic polynomial. The larger the confining pressure is, the more obvious the non-Darcy seepage effect of fractured rock seepage is. The seepage of rock fracture under high confining pressure is a highly nonlinear time-varying seepage. The permeability coefficient of rock decreases with the increase of volume stress. Under the action of low volume stress, the relationship between permeability coefficient and stress is more sensitive, while under the action of high volume stress, the relationship between permeability coefficient and volume stress is not significant. In the process of volume stress increasing, the β factor of non-Darcy flow appears negative. Under the action of low volume stress, the acceleration coefficient and β factor of non-Darcy flow increase, while under the action of high volume stress, the acceleration coefficient and β factor of non-Darcy flow decrease.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2014 ◽  
Vol 513-517 ◽  
pp. 269-272
Author(s):  
Yeong Mog Park ◽  
Ik Joo Um ◽  
Norihiko Miura ◽  
Seung Cheol Baek

The purpose of this study is to investigate the undrain shear strength increment during consolidation process of soft clayey soils. Thirty kinds of laboratory triaxial tests have been performed using undisturbed and remolded Ariake clay samples with different degree of consolidation and 5 kinds of confining pressure. Test results show that well known linear equation proposed by Yamanouchi et al.(1982) is overestimated the strength of undisturbed soft clay ground in the process of consolidation. A new simple and reasonable exponential equation proposed in this paper.


2011 ◽  
Vol 94-96 ◽  
pp. 1146-1151 ◽  
Author(s):  
Guan Rong ◽  
Xiao Jiang Wang

Permeability test for complete stress-strain process of coarse sandstone were carried out in triaxial test instrument. On the basis of test results, the influence of confining pressure and strain on the hydraulic conductivity was discussed. It is shown that in the complete stress-strain process, hydraulic conductivity changes in the law that presents the same character with the curve of stress-strain. The hydraulic conductivity reduces slightly with the increase of deviatoric stress in the stage of micro fracture compressing and elastic; In the elastoplastic stage, along with the expansion of new fractures, the hydraulic conductivity increases slowly at first and then reaches sharply to the maximum value after peak point; In the post-peak stage, the fracture which controls the hydraulic conductivity of coarse sandstone is compressed because of the confining pressure and the hydraulic conductivity decreases. During the process of deformation and failure, the hydraulic conductivity is more sensitive to the change of circumferential strain. With the increase of confining pressure, the increased value from initial to peak value and the decreased value from peak to residual value decreases.


Sign in / Sign up

Export Citation Format

Share Document