scholarly journals Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques, and Environments

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Pawel Czarnul ◽  
Jerzy Proficz ◽  
Adam Krzywaniak

The paper presents state of the art of energy-aware high-performance computing (HPC), in particular identification and classification of approaches by system and device types, optimization metrics, and energy/power control methods. System types include single device, clusters, grids, and clouds while considered device types include CPUs, GPUs, multiprocessor, and hybrid systems. Optimization goals include various combinations of metrics such as execution time, energy consumption, and temperature with consideration of imposed power limits. Control methods include scheduling, DVFS/DFS/DCT, power capping with programmatic APIs such as Intel RAPL, NVIDIA NVML, as well as application optimizations, and hybrid methods. We discuss tools and APIs for energy/power management as well as tools and environments for prediction and/or simulation of energy/power consumption in modern HPC systems. Finally, programming examples, i.e., applications and benchmarks used in particular works are discussed. Based on our review, we identified a set of open areas and important up-to-date problems concerning methods and tools for modern HPC systems allowing energy-aware processing.

Author(s):  
Reiner Anderl ◽  
Orkun Yaman

High Performance Computing (HPC) has become ubiquitous for simulations in the industrial context. To identify the requirements for integration of HPC-relevant data and processes a survey has been conducted concerning the German car manufacturers and service and component suppliers. This contribution presents the results of the evaluation and suggests an architecture concept to integrate data and workflows related with CAE and HPC-facilities in PLM. It describes the state of the art of HPC-applications within the simulation domain. Intensive efforts are currently invested on CAE-data management. However, an approach to systematic data management of HPC does not exist. This study states importance of an integrating approach for data management of HPC-applications and develops an architectural framework to implement HPC-data management into the existing PLM landscape. Requirements on key functionalities and interfaces are defined as well as a framework for a reference information model is conceptualized.


Acta Numerica ◽  
2012 ◽  
Vol 21 ◽  
pp. 379-474 ◽  
Author(s):  
J. J. Dongarra ◽  
A. J. van der Steen

This article describes the current state of the art of high-performance computing systems, and attempts to shed light on near-future developments that might prolong the steady growth in speed of such systems, which has been one of their most remarkable characteristics. We review the different ways devised to speed them up, both with regard to components and their architecture. In addition, we discuss the requirements for software that can take advantage of existing and future architectures.


Author(s):  
Marc Casas ◽  
Wilfried N Gansterer ◽  
Elias Wimmer

We investigate the usefulness of gossip-based reduction algorithms in a high-performance computing (HPC) context. We compare them to state-of-the-art deterministic parallel reduction algorithms in terms of fault tolerance and resilience against silent data corruption (SDC) as well as in terms of performance and scalability. New gossip-based reduction algorithms are proposed, which significantly improve the state-of-the-art in terms of resilience against SDC. Moreover, a new gossip-inspired reduction algorithm is proposed, which promises a much more competitive runtime performance in an HPC context than classical gossip-based algorithms, in particular for low accuracy requirements.


2019 ◽  
Vol 16 (2) ◽  
pp. 541-564
Author(s):  
Mathias Longo ◽  
Ana Rodriguez ◽  
Cristian Mateos ◽  
Alejandro Zunino

In-silico research has grown considerably. Today?s scientific code involves long-running computer simulations and hence powerful computing infrastructures are needed. Traditionally, research in high-performance computing has focused on executing code as fast as possible, while energy has been recently recognized as another goal to consider. Yet, energy-driven research has mostly focused on the hardware and middleware layers, but few efforts target the application level, where many energy-aware optimizations are possible. We revisit a catalog of Java primitives commonly used in OO scientific programming, or micro-benchmarks, to identify energy-friendly versions of the same primitive. We then apply the micro-benchmarks to classical scientific application kernels and machine learning algorithms for both single-thread and multi-thread implementations on a server. Energy usage reductions at the micro-benchmark level are substantial, while for applications obtained reductions range from 3.90% to 99.18%.


Sign in / Sign up

Export Citation Format

Share Document