scholarly journals Cross-Comparison and Calibration of Two Microscopic Traffic Simulation Models for Complex Freeway Corridors with Dedicated Lanes

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xingan (David) Kan ◽  
Lin Xiao ◽  
Hao Liu ◽  
Meng Wang ◽  
Wouter J. Schakel ◽  
...  

Realistic microscopic traffic simulation is essential for prospective evaluation of the potential impacts of new traffic control strategies. Freeway corridors with interacting bottlenecks and dedicated lanes generate complex traffic flow phenomena and congestion patterns, which are difficult to reproduce with existing microscopic simulation models. This paper discusses two alternative driving behavior models that are capable of modeling freeways with multiple bottlenecks and dedicated lanes over an extended period with varying demand levels. The models have been calibrated using archived data from a complicated 13-mile long section of the northbound SR99 freeway near Sacramento, California, for an 8-hour time period in which the traffic fluctuated from free-flow to congested conditions. The corridor includes multiple bottlenecks, multiple entry and exit ramps, and an HOV lane. Calibration results show extremely good agreement between field data and model predictions. The models have been cross-validated and produced similar macroscopic traffic performance. The main behavior that should be captured for successful modeling of such a complex corridor includes the anticipative and cooperative driver behavior near merges, lane preference in presence of dedicated lanes, and variations in desired headway along the corridor.

1998 ◽  
Vol 1644 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Yunlong Zhang ◽  
Larry E. Owen ◽  
James E. Clark

The purpose of this paper is to explore various traffic modeling aspects and theories that may overcome some of the limitations in existing microscopic simulation models. A multiregime microscopic traffic simulation approach has been formulated featuring realistic and comprehensive carfollowing and lane-changing logic. A prototype implementation of the multiregime approach was developed in C++ and extensively tested. The multiregime simulation results demonstrate the efficiency and validity of the proposed models for a broad range of traffic scenarios. The test and validation results indicate that the model and program outperformed traditional methods and other existing traffic simulation programs. The validity and efficiency of the model is attributed to the fact that the regimes were added to the model incrementally to reflect increasing agreement with real-world traffic flow. The techniques and corresponding models will be used to improve existing microscopic traffic simulation models and programs.


1999 ◽  
Vol 26 (6) ◽  
pp. 840-851 ◽  
Author(s):  
A F Al-Kaisy ◽  
J A Stewart ◽  
M Van Aerde

Microscopic traffic simulation models are being increasingly used to evaluate Intelligent Transportation Systems (ITS) strategies and to complement empirical data in developing new analytical procedures and methodologies. Lane changing rules are an essential element of any microscopic traffic simulation model. While most of these rules are based on theories and hypotheses, to date no attempt has been made to investigate the consistency of lane changing behaviour from microscopic simulation with empirical observations. The research presented in this paper examined this consistency at freeway weaving areas using empirical data. These data were collected in the late 1980s at several major freeway weaving sections in the State of California. The microscopic traffic simulation model INTEGRATION was used to perform simulation experiments in this research. Vehicle distributions, both total and by type of movement, were used as measures to investigate the lane changing activity that took place at these freeway areas. This examination revealed significant agreement between patterns of lane changing behaviour as observed in the field and as reproduced by microscopic simulation. Most quantitative discrepancies were shown to be a function of user-specified input data or due to some inherent limitations in the empirical data.Key words: simulation, lane changing, weaving, freeways.


Author(s):  
Wilco Burghout ◽  
Haris N. Koutsopoulos ◽  
Ingmar Andréasson

Traffic simulation is an important tool for modeling the operations of dynamic traffic systems. Although microscopic simulation models provide a detailed representation of the traffic process, macroscopic and mesoscopic models capture the traffic dynamics of large networks in less detail but without the problems of application and calibration of microscopic models. This paper presents a hybrid mesoscopic–microscopic model that applies microscopic simulation to areas of specific interest while simulating a large surrounding network in less detail with a mesoscopic model. The requirements that are important for a hybrid model to be consistent across the models at different levels of detail are identified. These requirements vary from the network and route choice consistency to the consistency of the traffic dynamics at the boundaries of the microscopic and mesoscopic submodels. An integration framework that satisfies these requirements is proposed. A prototype hybrid model is used to demonstrate the application of the integration framework and the solution of the various integration issues. The hybrid model integrates MITSIMLab, a microscopic traffic simulation model, and Mezzo, a newly developed mesoscopic model. The hybrid model is applied in two case studies. The results are promising and support both the proposed architecture and the importance of integrating microscopic and mesoscopic models.


Author(s):  
Byungkyu (Brian) Park ◽  
Hongtu (Maggie) Qi

Microscopic traffic simulation models have been playing an important role in the evaluation of transportation engineering and planning practices for the past few decades, particularly in cases in which field implementation is difficult or expensive to conduct. To achieve high fidelity and credibility for a traffic simulation model, model calibration and validation are of utmost importance. Most calibration efforts reported in the literature have focused on the informal practice, and they have seldom proposed a systematic procedure or guideline for the calibration and validation of simulation models. This paper proposes a procedure for microscopic simulation model calibration. The validity of the proposed procedure was demonstrated by use of a case study of an actuated signalized intersection by using a widely used microscopic traffic simulation model, Verkehr in Staedten Simulation (VISSIM). The simulation results were compared with multiple days of field data to determine the performance of the calibrated model. It was found that the calibrated parameters obtained by the proposed procedure generated performance measures that were representative of the field conditions, while the simulation results obtained with the default and best-guess parameters were significantly different from the field data.


Author(s):  
Zong Z. Tian ◽  
Thomas Urbanik ◽  
Roelof Engelbrecht ◽  
Kevin Balke

One of the issues involved in using microscopic simulation models is the variation in the simulation results. This study examined some of the more popular microscopic traffic simulation models, CORSIM, SimTraffic, and VISSIM, and investigated the variations in the performance measures generated by these models. The study focused on the capacity and delay estimates at a signalized intersection. The effects of link length, speed, and vehicle headway generation distribution were also investigated. With regard to variations in performance measures, the study found that CORSIM yields the lowest variations, whereas SimTraffic yields the highest. The highest variation in each simulation model normally occurs when the traffic demand approaches capacity. It was also found that delays are affected by the link length and speed in simulation models. Such an impact on delays is closely related to the range of speed variations. In general, shorter links and higher link speeds result in lower delays. There is no strong evidence that the headway distribution used to generate vehicles in the simulated network has any effect on capacity and delay estimates. Multiple simulation runs are necessary to achieve an accurate estimate on the true system performance measures. With a 10% error range in estimated delay, two to five runs may be enough for under-capacity conditions, but more than 40 multiple runs may be necessary to accurately estimate delay at, near, or over capacity.


Author(s):  
Xuan Fang ◽  
Tamás Tettamanti

It is believed that autonomous vehicles will replace conventional human drive vehicles in the next decades due to the emerging autonomous driving technology, which will definitely bring a massive transformation in the road transport sector. Due to the high complexity of traffic systems, efficient traffic simulation models for the assessment of this disruptive change are critical. The objective of this paper is to justify that the common practice of microscopic traffic simulation needs thorough revision and modification when it is applied with the presence of autonomous vehicles in order to get realistic results. Two high-fidelity traffic simulators (SUMO and VISSIM) were applied to show the sensitivity of microscopic simulation to automated vehicle’s behavior. Two traffic evaluation indicators (average travel time and average speed) were selected to quantitatively evaluate the macro-traffic performance of changes in driving behavior parameters (gap acceptance) caused by emerging autonomous driving technologies under different traffic demand conditions.


1999 ◽  
Vol 26 (3) ◽  
pp. 270-281 ◽  
Author(s):  
Mark Carter ◽  
Hesham Rakha ◽  
Michel Van Aerde

On most freeways, a number of factors interact to produce lane-to-lane variations in speed and volume which are both site and volume dependent. The following paper explores and statistically verifies these variations using detector data and a combination of complementary techniques based on data collected for 30 days at 27 detector stations in May 1994 along the Queen Elizabeth Way freeway near Toronto, Ontario. The analysis indicates that considerable volume dependencies exist at each site, and that these dependencies are site specific. In addition to their independent variations, speed and flow are also shown to interact differently across different lanes and result in different underlying speed-flow relationships. The findings are intended to be relevant to the calibration of microscopic traffic simulation models and automatic incident detection algorithms. As such, the paper does not attempt to specifically identify the underlying causes for the variations, but rather attempts to recognize the aggregated effects of these causes in a fashion that would be useful to real-time freeway traffic management system control strategies relying solely on loop detector inputs.Key words: traffic-flow theory, traffic modeling, traffic simulation, incident-detection algorithms.


2019 ◽  
Vol 11 (5) ◽  
pp. 1276 ◽  
Author(s):  
Clélia Lopez ◽  
Chuan-Lin Zhao ◽  
Stéphane Magniol ◽  
Nicolas Chiabaut ◽  
Ludovic Leclercq

This paper investigated economic truck parking behavior to implement comprehensive Freight Loading Zone (FLZ) policies. We assumed that the delivery trucks can only park on FLZ. The proposed contribution is to quantify the cruising for parking time of trucks. We used a microscopic traffic simulation based on a Manhattan network and the real network of Lyon (France). This paper explored the relationship between the searching time, the parking probabilities and the region’s parking density. Based on research results, an application to last mile cost function is proposed.


Author(s):  
Iisakki Kosonen ◽  

The microscopic simulation is getting increasingly common in traffic planning and research because of the detailed analysis it can provide. The drawback of this development is that the calibration and validation of such a detailed simulation model can be very tedious. This paper summarizes the research on automatic calibration of a high-fidelity micro-simulation (HUTSIM) at the Helsinki University of Technology (TKK). In this research we used ramp operation as the case study. The automatic calibration of a detailed model requires a systematic approach. A key issue is the error-function, which provides a numeric value to the distance between simulated and measured results. Here we define the distance as combination of three distributions namely the speed distribution, gap distribution and lane distribution. We developed an automated environment that handles all the necessary operations. The system organizes the files, executes the simulations, evaluates the error and generates new parameter combinations. For searching of the parameter space we used a genetic algorithm (GA). The overall results of the research were good demonstrating the potential of using automatic processes in both calibration and validation of simulation models.


Sign in / Sign up

Export Citation Format

Share Document