scholarly journals A Self-Powered PMFC-Based Wireless Sensor Node for Smart City Applications

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Daniel Ayala-Ruiz ◽  
Alejandro Castillo Atoche ◽  
Erica Ruiz-Ibarra ◽  
Edith Osorio de la Rosa ◽  
Javier Vázquez Castillo

Long power wide area networks (LPWAN) systems play an important role in monitoring environmental conditions for smart cities applications. With the development of Internet of Things (IoT), wireless sensor networks (WSN), and energy harvesting devices, ultra-low power sensor nodes (SNs) are able to collect and monitor the information for environmental protection, urban planning, and risk prevention. This paper presents a WSN of self-powered IoT SNs energetically autonomous using Plant Microbial Fuel Cells (PMFCs). An energy harvesting device has been adapted with the PMFC to enable a batteryless operation of the SN providing power supply to the sensor network. The low-power communication feature of the SN network is used to monitor the environmental data with a dynamic power management strategy successfully designed for the PMFC-based LoRa sensor node. Environmental data of ozone (O3) and carbon dioxide (CO2) are monitored in real time through a web application providing IoT cloud services with security and privacy protocols.

Author(s):  
Haiying Huang ◽  
Yayu Hew

This paper presents the implementation and characterization of a low power wireless vibration sensor that can be powered by a flash light. The wireless system consists of two components, namely the wireless sensor node and the wireless interrogation unit. The wireless sensor node includes a wireless strain gauge that consumes around 6 mW, a signal modulation circuit, and a light energy harvesting unit. To achieve ultra-low power consumption, the signal modulation circuit was implemented using a voltage-controlled oscillator (VCO) to convert the strain gauge output to an intermediate frequency (IF) signal, which is then used to alter the impedance of the sensor antenna and thus achieves amplitude modulation of the backscattered antenna signal. A generic solar panel with energy harvesting circuit is used to power the strain sensor node continuously. The wireless interrogation unit transmits the interrogation signal and receives the amplitude modulated antenna backscattering, which can be down-converted to recover the IF signal. In order to measure the strains dynamically, a Phase Lock Loop (PLL) circuit was implemented at the interrogator to track the frequency of the IF signal and provide a signal that is directly proportional to the measured strain. The system features ultra-low power consumption, complete wireless sensing, solar powering, and portability. The application of this low power wireless strain system for vibration measurement is demonstrated and characterized.


2013 ◽  
Vol 9 (1) ◽  
pp. 103-117 ◽  
Author(s):  
Salah-Eddine Adami ◽  
Nicolas Degrenne ◽  
Walid Haboubi ◽  
Hakim Takhedmit ◽  
Denis Labrousse ◽  
...  

A novel self-powered wireless sensor node is proposed and prototyped to overcome the ambient energy lacking in the dual energy harvesting sources by including a secondary energy storage. Moreover, an energy-aware Event-Priority-Driven Dissemination (EPDD) management algorithm has been developed and implemented to control the WSN integrity and reducing the sensor node power consumption as well. EPDD was developed to manage the sensor node operation and to make the sink station able to detect a missing wireless node within the network, which will guarantee the nodes integrity detection. The evaluations revealed that the EPDD shows a good performance in reducing the node power consumption compared to the data push algorithm, whereby, EPDD node was operating 4 hours more than the data push node on the same power source. Regarding the WSN integrity, the EPDD algorithm outpaced the event trigger algorithm, whereby, the EPDD was easily able to detect a node down within the WSN at the contrary of the event trigger.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Xihai Zhang ◽  
Junlong Fang ◽  
Fanfeng Meng ◽  
Xiaoli Wei

Wireless sensor networks (WSNs) have been expected to improve the capability of capturing mechanical vibration dynamic behaviors and evaluating the current health status of equipment. While the expectation for mechanical vibration monitoring using WSNs has been high, one of the key limitations is the limited lifetime of batteries for sensor node. The energy harvesting technologies have been recently proposed. One of them shares the same main idea, that is, energy harvesting from ambient vibration can be converted into electric power. Employing the vibration energy harvesting, a novel self-powered wireless sensor node has been developed to measure mechanical vibration in this paper. The overall architecture of node is proposed. The wireless sensor node is described into four main components: the energy harvesting unit, the microprocessor unit, the radio transceiver unit, and accelerometer. Moreover, the software used to control the operation of wireless node is also suggested. At last, in order to achieve continuous self-powered for nodes, two operation modes including the charging mode and discharging mode are proposed. This design can effectively solve the problem of continuous supply power of sensor node for mechanical vibration monitoring.


Author(s):  
Jason M. Weaver ◽  
Kristin L. Wood ◽  
Richard H. Crawford ◽  
Dan Jensen

In designing for a system’s lifecycle considerations, long-term energy needs often become an important limiting factor. Shifting from conventional energy sources (e.g. fossil fuels) toward renewable sources (e.g. wind and solar) has become a popular means for focusing on the lifecycle of large-scale systems like automobiles and the national electrical grid. This same shift in small, low-power systems such as sensors has the additional advantage of potentially increasing the operational life of the systems. This paper introduces a methodology for determining the feasibility of in situ energy harvesting as a viable power source for a given low-power system. The method is demonstrated by considering a wireless sensor node and the specific application of monitoring the fatigue life of highway bridges, with a target operational life of ten years for the sensor node. Peak and average power requirements for wireless sensor nodes are calculated and compared to the power density available from solar, wind, and vibration energy. Energy storage is also discussed, including both disposable batteries (as the status quo with which to compare energy harvesting) and rechargeable systems (as a necessary component of the energy harvesting system). Solar, wind, and vibration energy are all found to be feasible sources of power for this particular application. Vibration harvesting has lower power density than solar and wind harvesting, but has the advantage of being less dependent on location, more self-contained, and largely maintenance free. Energy harvesting in general only becomes attractive for projected life cycles exceeding the life of disposable batteries, which for this particular application is estimated at 4–6 years. Thus, energy harvesting is an excellent way to extend the lifespan of low-power systems where power availability is the limiting factor.


Sign in / Sign up

Export Citation Format

Share Document