scholarly journals Effect of Furostanol Saponins from Allium Macrostemon Bunge Bulbs on Platelet Aggregation Rate and PI3K/Akt Pathway in the Rat Model of Coronary Heart Disease

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Hui Feng ◽  
Zhipeng Wang ◽  
Changsong Wang ◽  
Xinyi Zhu ◽  
Zhigang Liu ◽  
...  

Aim. To investigate the effect of Furostanol Saponins from Allium Macrostemon Bunge Bulbs (FSAMB) on platelet aggregation rate of rats with coronary heart disease and discuss the mechanism of FSAMB affecting the platelet aggregation rate through PI3K/Akt pathway. We established the rat models with coronary heart disease (CHD) and prepared the platelet-rich plasma. The effect of different concentrations of FSAMB on platelet aggregation in SD rats induced by ADP was observed in vitro and in vivo. And Lactate Dehydrogenase (LDH), Creatine Kinase-MB Form (CK-MB), and Cardiac Troponin I (cTnI) are detected in the blood to know the level of damage to heart cells. The expansion of platelets in the immobilized fibrinogen in different concentrations of FSAMB was observed. Western blot was conducted to detect the phosphorylation level of protein kinase B (also known as Akt) and the expression level of phosphoinositide 3-kinase (PI3K). We found that FSAMB had a significant inhibitory effect on the ADP-induced platelet aggregation in vitro. Intragastric administration of FSAMB also inhibited platelet aggregation induced by ADP in rats. LDH, CK-MB, and cTnI levels in serum of rats in FSAMB (672 mg/kg) group were lower than those in the model control group after the intervention (P<0.01 or P<0.05). FSAMB inhibited the expansion of platelets on immobilized fibrinogen. Also, FSAMB inhibited ADP-induced platelet PI3K expression and Akt phosphorylation. The inhibition of Akt phosphorylation by FSAMB was more obvious after the inhibition of the expression of PI3K. This study demonstrated that FSAMB can reduce the degree of myocardial cell damage and inhibit ADP-induced platelet aggregation in SD rats, possibly by inhibiting platelet PI3K/Akt signaling pathway in vitro and in vivo.

Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


1993 ◽  
Vol 265 (2) ◽  
pp. H774-H778 ◽  
Author(s):  
D. F. Fitzpatrick ◽  
S. L. Hirschfield ◽  
R. G. Coffey

Current interest in the presumed benefits of wine in protecting against coronary heart disease prompted us to investigate possible effects of various grape products on vascular function in vitro. Certain wines, grape juices, and grape skin extracts relaxed precontracted smooth muscle of intact rat aortic rings but had no effect on aortas in which the endothelium had been removed. Quercitin and tannic acid, compounds known to be present in grape skins, also produced endothelium-dependent relaxation; two other grape skin compounds, resveratrol and malvidin, did not relax the rings. Phenylephrine-induced contractions were attenuated by prior exposure of aortic rings to grape skin extracts. The extracts also increased guanosine 3',5'-cyclic monophosphate (cGMP) levels in intact vascular tissue, and both relaxation and the increase in cGMP were reversed by NG-monomethyl-L-arginine and NG-nitro-L-arginine, competitive inhibitors of the synthesis of the endothelium-derived relaxing factor, nitric oxide (NO). The vasorelaxation induced by grape products therefore appears to be mediated by the NO-cGMP pathway. If such responses occur in vivo, they could conceivably help to maintain a patent coronary artery and thereby possibly contribute to a reduced incidence of coronary heart disease.


2021 ◽  
Vol 20 (1) ◽  
pp. 17-24
Author(s):  
I. M. Kadanova ◽  
A. I. Neznanov ◽  
A. Е. Lugovtsov ◽  
Yu. I. Gurfinkel ◽  
A. A. Pigurenko ◽  
...  

Introduction. Blood microcirculation and its microrheologic properties are impaired in cardiovascular diseases. Microrheologic properties are characterized by the red blood cells (RBC) ability to aggregate and disaggregate. Therefore, the correlation studies between RBC aggregation and microcirculation disorders in pathologies are of interest for the development of theoretical concepts related to blood flow and for clinical practice.Aim. To analyze the correlation between capillary blood flow parameters measured in vivo and microrheologic blood parameters measured in vitro in patients suffering arterial hypertension (AH) and coronary heart disease (CHD).Materials and methods. We studied 3 groups of people: patients suffering AH, patients suffering AH+CHD and healthy donors. The characteristic aggregation time and aggregation index were measured in vitro by laser aggregometry. Analysis of capillary blood velocity (CBV) and assessment of the presence and absence of RBC aggregates in the nail bed capillaries were performed in vivo using vital digital capillaroscopy (VDC).Results. RBC aggregation for groups of patients suffering AH and AH+CHD was increased compared to the control group. Thus, in these patients groups, the characteristic aggregation time significantly decreases by an average of (38±13) %. Comparison of the results obtained using in vitro and in vivo methods showed the aggregation index for individuals with high CBV was significantly lower than for individuals with low CBV. The tendency is that the number of aggregates in the capillaries increases with a decrease in CBV.Conclusion. RBC aggregation is increased in groups of patients suffering AH and AH+CHD compared to the control group. The correlation between parameters measured in vitro and in vivo is evident for patients divided into subgroups according to parameters measured using the VDC. The obtained results allow us to conclude that the used methods are applicable in clinical practice.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Yu-Chen Cheng ◽  
Jer-Ming Sheen ◽  
Wen Long Hu ◽  
Yu-Chiang Hung

Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerousin vivoandin vitrostudies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.


1987 ◽  
Author(s):  
M L Rand ◽  
H M Groves ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

Epidemiological studies indicate that moderate consumption of alcohol is associated with a reduced risk of coronary heart disease, but it is not known whether inhibition of platelet functions by ethanol is involved. We studied the effects of ethanol on rabbit platelet responses to collagen in vitro and in vivo. Addition of ethanol (4 mg/ml) to suspensions of washed platelets prelabelled with [14c]serotonin inhibited aggregation and secretion in response to low (0.4 μg/ml) concentrations of acid soluble collagen (14% secretion without ethanol, 3% secretion with ethanol). With a higher concentration of collagen (1.25 μg/ml), 4 mg/ml ethanol had no inhibitory effect. The inhibitory effect of ethanol on collagen-induced aggregation was also observed in citrated platelet-rich plasma (c-PRP) to which ethanol was added in vitro and in c-PRP from rabbits given ethanol acutely by gavage (3.5 g/kg) 30 min before blood sampling. The accumulation of [51cr]-labeled platelets on the subendothelium of rabbit aortae de-endothelialized with balloon catheters was measured in vivo in rabbits given ethanol (blood ethanol concentration at time of vessel wall injury: 4.1 ± 0.2 mg/ml, mean ± S.E., n=6). Ten min after de-endothelialization, there was no difference between the number of platelets adherent per square mm of injured aorta of control rabbits (39,400 ± 2,600, mean ± S.E., n=6) and intoxicated rabbits (36,800 ± 3,700, mean ± S.E., n=6). Thus, although ethanol inhibits platelet aggregation and secretion in response to collagen in vitro and ex vivo, it does not alter platelet adherence to the subendothelium, including its constituent collagen, in vivo. Therefore, it is unlikely that ethanol exerts its beneficial effects against coronary heart disease by altering the initial adherence of platelets to injured vessel walls.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hafiz Muhammad Abdur Rahman ◽  
Muhammad Fawad Rasool ◽  
Imran Imran

Objective. This in vitro and in vivo study was conducted to rationalize some of traditional medicinal uses of Ailanthus altissima in gastrointestinal, respiratory, and cardiovascular systems. Materials. Crude extract of Ailanthus altissima (Aa.Cr) and its fractions were prepared and utilized in in vitro and in vivo studies. For in vitro studies, Aa.Cr was investigated on isolated rabbit jejunum, isolated tracheal strip, and isolated aorta of rat suspended in tissue organ bath. Platelet rich and platelet poor plasma were used to study platelet aggregation inhibitory activity. In vivo antidiarrheal effect of Aa.Cr was investigated on balb/c mice pretreated with castor oil to induce diarrhea and SD rats were used to study hypotensive activity. Results. Concentration dependent spasmolytic effects of Aa.Cr and its DCM fraction (Aa.DCM) were observed on spontaneous and spasmogen induced contractions in jejunum isolated from rabbit, but effect against high potassium (high-K+) induced contractions was more potent. Moreover Aa.Cr showed parallel shifting of calcium response curve to the right side. While its aqueous fraction (Aa.aq) caused spasmogenesis of isolated rabbit jejunum, this effect was blocked partially with prior administration of atropine (1μM). Concentration dependent protection against castor oil induced diarrhea was also observed. Relaxant effect was observed by the application of Aa.Cr and Aa.DCM against high-K+ and carbachol (CCh) induced contractions in tracheal strips isolated from SD rats, while Aa.Aq caused partial relaxation of high-K+ induced contractions, but no effect was observed against CCh induced contractions. Relaxation of rat aorta by the application of Aa.Cr and its fractions was also observed. Inhibition of force of contraction in rabbit atrium was also observed. Inhibition of platelet aggregation was observed against epinephrine and ADP induced aggregation. Conclusion. Keeping in view the observed results, it is concluded that smooth muscle relaxant, platelet aggregation inhibitory and hypotensive effect may be due to the blockage of calcium channels.


1987 ◽  
Author(s):  
Zen Erzhen ◽  
Lu Yung-Cai ◽  
Wang Jain ◽  
Shi Fang ◽  
Lia Xiaoqing ◽  
...  

The mechanism of Rhaponticum Uniflorum DC in preventing coronary heart disease was studied in vivo and in vitro. TBA fluorescent method was used to determine lipid peroxides (Lpo) and double analysis method was used to determine glutathione peroxidase (GSH-Px) activity and fluorescent polarization of DPH probed membrane fluidity of smooth muscle cell (SMC).Rabbits were fed with high fat diet for 120 days. At the end of experiment, all the animals acquired hyperlipidemia and developed atheroma lesions in aorta and/or coronary. It was found that hyperlipidemia caused a rising of Lpo in blood (from 2.6±0.56 in control up to 8.48±3.28 nmol/ml) and in arterial wall (from 6.75±0.59 in control up to 31.94±4.20 nmol/g protein) and a decreasing of GSH-Px activity in arterial wall (from 0.210±0.095 down to 0.056±0.026 EU/g protein); concomitantly, an increase in microviscosity of arterial SMC membrane (from 1.93±0.04 in control up to 3.49±0.92 poise) which reflects a decrease in fluidity of SMC membrane. Lpo level was higher in plaque area (113.70±46.14 nmol/g protein) than in non-plaque area (58.32±12.69 nmol/g protein). GSH-Px activity level was lower in plaque area (0.0052±0.0014 EU/g protein) than in non-plaque area (0.015+0.0014 EU/g protein). Microviscosity of SMC membrane was higher in plaque area (2.92±0.35 poise) than in non-plaque area (2.26±0.24 poise, p<0.02). By comparison, the rabbits received Rhaponticum Uniflorum DC and VE showed much lowering of Lpo level in arterial wall (down to 10.74±1.61 and 9.93±1.17 nmol/g protein) and decreasing of microviscosity (down to 2.05+0.45 and 2.08+0.50 poise) that is increasing of membrane fluidity of arterial SMC membrane, but GSH-Px activity in arterial wall was keeping at lower level (0.036±0.027 and 0.051±0.027 EU/g protein). The atheroma lesions develped in these two group animals were less severe and fewer in number.


2020 ◽  
Vol 120 (11) ◽  
pp. 1536-1547
Author(s):  
Jianjun Zhang ◽  
Yan Zhang ◽  
Shuang Zheng ◽  
Yangyang Liu ◽  
Lin Chang ◽  
...  

AbstractPlatelet activation plays a pivotal role in physiological hemostasis and pathological thrombosis causing heart attack and stroke. Previous studies conclude that simultaneous activation of Gi and G12/13 signaling pathways is sufficient to cause platelet aggregation. However, using Gq knockout mice and Gq-specific inhibitors, we here demonstrated that platelet aggregation downstream of coactivation of Gi and G12/13 depends on agonist concentrations; coactivation of Gi and G12/13 pathways only induces platelet aggregation under higher agonist concentrations. We confirmed Gi and G12/13 pathway activation by showing cAMP (cyclic adenosine monophosphate) decrease and RhoA activation in platelets stimulated at both low and high agonist concentrations. Interestingly, we found that though Akt and PAK (p21-activated kinase) translocate to the platelet membrane upon both low and high agonist stimulation, membrane-translocated Akt and PAK only phosphorylate at high agonist concentrations, correlating well with platelet aggregation downstream of concomitant Gi and G12/13 pathway activation. PAK inhibitor abolishes Akt phosphorylation, inhibits platelet aggregation in vitro and arterial thrombus formation in vivo. We propose that the PAK-PI3K/Akt pathway mediates platelet aggregation downstream of Gi and G12/13, and PAK may represent a potential antiplatelet and antithrombotic target.


Sign in / Sign up

Export Citation Format

Share Document