scholarly journals Mutation Spectrum in TPO Gene of Bangladeshi Patients with Thyroid Dyshormonogenesis and Analysis of the Effects of Different Mutations on the Structural Features and Functions of TPO Protein through In Silico Approach

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Mst. Noorjahan Begum ◽  
Md Tarikul Islam ◽  
Shekh Rezwan Hossain ◽  
Golam Sarower Bhuyan ◽  
Mohammad A. Halim ◽  
...  

Although thyroid dyshormonogenesis (TDH) accounts for 10-20% of congenital hypothyroidism (CH), the molecular etiology of TDH is unknown in Bangladesh. Thyroid peroxidase (TPO) is most frequently associated with TDH and the present study investigated the spectrum of TPO mutations in Bangladeshi patients and analyzed the effects of mutations on TPO protein structure through in silico approach. Sequencing-based analysis of TPO gene revealed four mutations in 36 diagnosed patients with TDH including three nonsynonymous mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, and one synonymous mutation p.Pro715Pro. Homology modelling-based analysis of predicted structures of MPO-like domain (TPO142-738) and the full-length TPO protein (TPO1-933) revealed differences between mutant and wild type structures. Molecular docking studies were performed between predicted structures and heme. TPO1-933 predicted structure showed more reliable results in terms of interactions with the heme prosthetic group as the binding energies were -11.5 kcal/mol, -3.2 kcal/mol, -11.5 kcal/mol, and -7.9 kcal/mol for WT, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, respectively, implying that p.Ala373Ser and p.Thr725Pro mutations were more damaging than p.Ser398Thr. However, for the TPO142-738 predicted structures, the binding energies were -11.9 kcal/mol, -10.8 kcal/mol, -2.5 kcal/mol, and -5.3 kcal/mol for the wild type protein, mutant proteins with p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro substitutions, respectively. However, when the interactions between the crucial residues including residues His239, Arg396, Glu399, and His494 of TPO protein and heme were taken into consideration using both TPO1-933 and TPO142-738 predicted structures, it appeared that p.Ala373Ser and p.Thr725Pro could affect the interactions more severely than the p.Ser398Thr. Validation of the molecular docking results was performed by computer simulation in terms of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulation. In conclusion, the substitutions mutations, namely, p.Ala373Ser, p.Ser398Thr, and p.Thr725Pro, had been involved in Bangladeshi patients with TDH and molecular docking-based study revealed that these mutations had damaging effect on the TPO protein activity.

2019 ◽  
Vol 13 ◽  
pp. 117793221986553 ◽  
Author(s):  
Gbolahan O Oduselu ◽  
Olayinka O Ajani ◽  
Yvonne U Ajamma ◽  
Benedikt Brors ◽  
Ezekiel Adebiyi

Plasmodium falciparum adenylosuccinate lyase ( PfADSL) is an important enzyme in purine metabolism. Although several benzimidazole derivatives have been commercially developed into drugs, the template design as inhibitor against PfADSL has not been fully explored. This study aims to model the 3-dimensional (3D) structure of PfADSL, design and predict in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) of 8 substituted benzo[ d]imidazol-1-yl)methyl)benzimidamide compounds as well as predict the potential interaction modes and binding affinities of the designed ligands with the modelled PfADSL. PfADSL 3D structure was modelled using SWISS-MODEL, whereas the compounds were designed using ChemDraw Professional. ADMET predictions were done using OSIRIS Property Explorer and Swiss ADME, whereas molecular docking was done with AutoDock Tools. All designed compounds exhibited good in silico ADMET properties, hence can be considered safe for drug development. Binding energies ranged from −6.85 to −8.75 kcal/mol. Thus, they could be further synthesised and developed into active commercial antimalarial drugs.


2021 ◽  
Vol 19 (3) ◽  
pp. e29
Author(s):  
Yedukondalu Kollati ◽  
Radha Rama Devi Akella ◽  
Shaik Mohammad Naushad ◽  
Rajesh K. Patel ◽  
G. Bhanuprakash Reddy ◽  
...  

In our previous studies, we have demonstrated the association of certain variants of the thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (TG) genes with congenital hypothyroidism. Herein, we explored the mechanistic basis for this association using different in silico tools. The mRNA 3'-untranslated region (3'-UTR) plays key roles in gene expression at the post-transcriptional level. In TSHR variants (rs2268477, rs7144481, and rs17630128), the binding affinity of microRNAs (miRs) (hsa-miR-154-5p, hsa-miR-376a-2-5p, hsa-miR-3935, hsa-miR-4280, and hsa-miR-6858-3p) to the 3'-UTR is disrupted, affecting post-transcriptional gene regulation. TPO and TG are the two key proteins necessary for the biosynthesis of thyroid hormones in the presence of iodide and H2O2. Reduced stability of these proteins leads to aberrant biosynthesis of thyroid hormones. Compared to the wild-type TPO protein, the p.S398T variant was found to exhibit less stability and significant rearrangements of intra-atomic bonds affecting the stoichiometry and substrate binding (binding energies, ΔG of wild-type vs. mutant: ‒15 vs. ‒13.8 kcal/mol; and dissociation constant, Kd of wild-type vs. mutant: 7.2E-12 vs. 7.0E-11 M). The missense mutations p.G653D and p.R1999W on the TG protein showed altered ΔG (0.24 kcal/mol and 0.79 kcal/mol, respectively). In conclusion, an in silico analysis of TSHR genetic variants in the 3'-UTR showed that they alter the binding affinities of different miRs. The TPO protein structure and mutant protein complex (p.S398T) are less stable, with potentially deleterious effects. A structural and energy analysis showed that TG mutations (p.G653D and p.R1999W) reduce the stability of the TG protein and affect its structure-functional relationship.


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


Author(s):  
Amey Sharma ◽  
Apoorva Rana ◽  
Lakshya Mangtani ◽  
Aakanksha Kalra ◽  
Ravi Ranjan Kumar Niraj

Background: Infections caused by drug resistant microorganisms have been increasing worldwide thereby being one of the major causes of morbidity in the 21st century. Klebsiella pneumoniae is one such bacteria causing lung inflammation, lung injury and death. Emergence of hyper-virulent and drug resistant species such as ESBL and CRKP has made this microbe a serious and urgent threat. The pace of emergence of these species is outgrowing the development of novel drug and vaccine candidates thereby focusing on drug repurposing approach. Objective: 1. Homology Modelling of Thymidylate Synthase. 2. Verification of Modelled Structure. 3. Molecular Docking. 4. Molecular Dynamic Simulation of Docked Complex. 5. In vitro analysis of 5-FU activity against Klebsiella pneumonia. Method: The 3-D structure of Thymidylate Synthase was predicted using Swiss-Model server and validated by in silico approaches. - Determination protein-protein interactions using STRING database. - Molecular docking. - MD simulations of 5-FU with predicted structure of thymidylate synthase. - In vitro antimicrobial drug sensitivity assay at different concentrations. Result: Hydrogen bond was observed in Molecular Docking - Protein-ligand complex remains stable during simulation. - 5-FU shows antimicrobial activity against Klebsiella pneumonia during In vitro study. Conclusion: Both In silico as well as in vitro analysis have indicated that 5-FU can potentially be developed as an antimicrobial agent towards Klebsiella pneumonia


2020 ◽  
Author(s):  
LAMIAE ELKHATTABI ◽  
Hicham Charoute ◽  
Rachid Saile ◽  
Abdelhamid Barakat

The novel COVID-19 pandemic is now a health threat, with a deep-felt impact worldwide. The new coronavirus 2019 (2019 n-Cov) binds to host human receptors through Receptor Binding Domain RBD of Spike glycoprotein (S), making it a prominent drug target. The present study aims to identify new potential hits that can inhibit the S protein using in silico approaches. Several natural and synthetics compounds (antiasthmatics, Antiviral, Antimalarial, Antibacterial, Anti-Inflammatory, cyclic peptide, and cyclic bis) were screened by molecular docking using AutoDock Vina. Additionally, we tested calcitriol and three known drugs (Azithromycin, HydroxyChloroquine, and Chloroquine ) against the spike protein to found if they have any direct interaction.<br>Our finding consists of 4 potential synthetic compounds from PubChem database, known for their antiasthmatic effects, that show highly binding energies each (-8.6 kcal/mol, 7.7kcal/mol, -7.2 kcal/mol and -7.0 kcal/mol). Another 5 natural compounds from the South African natural sources database (SANCDB) that bind to RBD of Spike with significant energy each: (Marchantin C with -7.3 kcal/mol, Riccardin C with -7.0 kcal/mol, Digitoxigenin-glucoside with -6.9 kcal/mol, D-Friedoolean-14-en-oic acid with -6.8 kcal/mol and, Spongotine A with -6.7 kcal/mol). The FaF-Drugs server was used to evaluate the drug-like properties of the identified compounds. Additionally, Calcitriol, Azithromycin, and HydroxyChloroquine have an appreciable binding affinity to 2019-nCoV S, suggesting a possible mechanism of action. Using in silico approaches like molecular docking and pharmacokinetic properties, we showed new potential inhibitors. Our findings need further analysis, and chemical design for more effective derivatives of these compounds speculated to disrupt the viral recognition of host receptors.


2018 ◽  
Author(s):  
Juan P. Bascur ◽  
Melissa Alegría-Arcos ◽  
Ingrid Araya-Durán ◽  
Ezequiel I. Juritz ◽  
Fernando D. González-Nilo ◽  
...  

AbstractIDH1 and IDH2 are human enzymes that convert isocitrate (ICT) into α-ketoglutarate (AKG). However, mutations in positions R132 of IDH1 and R140 and R172 of IDH2 cause these enzymes to convert AKG into 2-hydroxyglutarate (2HG). Concurrently, accumulation of 2HG in the cell is correlated with the development of cancer. This activity change is mainly due to the loss of the competitive inhibition by ICT of these enzymes, but the molecular mechanism behind this loss of inhibition is currently unknown. In this work we characterized the inhibition and loss of inhibition of IDH1 and IDH2 by means of the binding energies derived from molecular docking calculations. We characterized the substrate binding sites and how they differ among the mutant and wild type enzymes using a Jaccard similarity coefficient based on the residues involved in binding the substrates. We found that molecular docking effectively identifies the inhibition by ICT in the wild type and mutant enzymes that do not appear in tumors, and the loss of inhibition in the mutant enzymes that appear in tumors. Additionally, we found that the binding sites of the mutant enzymes are different among themselves. Finally, we found that the regulatory segment of IDH1 plays a prominent role in the change of binding sites between the mutant enzymes and the wild-type enzymes. Our findings show that the loss of inhibition is related to variations in the enzyme binding sites. Additionally, our findings show that a drug capable of targeting all IDH1 and IDH2 mutations in cancer is unlikely to be found due to significant differences among the binding sites of these paralogs. Moreover, the methodology developed here, which combines molecular docking calculations with binding site similarity estimation, can be useful for engineering enzymes, for instance, when aiming to modify the substrate affinity of an enzyme.


2022 ◽  
Vol 12 (1) ◽  
pp. 515
Author(s):  
Lucy R. Hart ◽  
Charlotta G. Lebedenko ◽  
Saige M. Mitchell ◽  
Rachel E. Daso ◽  
Ipsita A. Banerjee

In this work, in silico studies were carried out for the design of diterpene and polyphenol-peptide conjugates to potentially target over-expressed breast tumor cell receptors. Four point mutations were induced into the known tumor-targeting peptide sequence YHWYGYTPQN at positions 1, 2, 8 and 10, resulting in four mutated peptides. Each peptide was separately conjugated with either chlorogenate, carnosate, gallate, or rosmarinate given their known anti-tumor activities, creating dual targeting compounds. Molecular docking studies were conducted with the epidermal growth factor receptor (EGFR), to which the original peptide sequence is known to bind, as well as the estrogen receptor (ERα) and peroxisome proliferator-activated receptor (PPARα) using both Autodock Vina and FireDock. Based on docking results, peptide conjugates and peptides were selected and subjected to molecular dynamics simulations. MMGBSA calculations were used to further probe the binding energies. ADME studies revealed that the compounds were not CYP substrates, though most were Pgp substrates. Additionally, most of the peptides and conjugates showed MDCK permeability. Our results indicated that several of the peptide conjugates enhanced binding interactions with the receptors and resulted in stable receptor-ligand complexes; Furthermore, they may successfully target ERα and PPARα in addition to EGFR and may be further explored for synthesis and biological studies for therapeutic applications.


2020 ◽  
Vol 11 (1) ◽  
pp. 7981-7993

The infection of the global COVID-19 pandemic and the absence of any possible treatment options warrants the use of all available resources to find effective drugs against this scourge. Various ongoing researches have been searching for the new drug candidate against COVID-19 infection. The research objective is based on the molecular docking study of inhibition of the main protease of COVID-19 by natural compounds found in Allium sativum and Allium cepa. Lipinski rule of five and Autodock 4.2 was used by using the Lamarckian Genetic Algorithm to perform Molecular docking to analyze the probability of docking. Further, ADME analysis was also performed by using SwissADME, which is freely available on the web. In the present study, we identified S-Allylcysteine sulfoxide (Alliin), S-Propyl cysteine, S-Allylcysteine, S-Ethylcysteine, S-Allylmercaptocysteine, S-Methylcysteine, S-propyl L-cysteine with binding energies (-5.24, -4.49, -4.99, -4.91, -4.79, -4.76, -5.0 kcal/mol) as potential inhibitor candidates for COVID-19. Out of 7 selected compounds, alliin showed the best binding efficacy with target protein 6LU7. In silico ADME analysis revealed that these compounds are expected to have a standard drug-like property as well. Our findings propose that natural compounds from garlic and onion can be used as potent inhibitors against the main protease of COVID-19, which could be helpful in combating the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document