scholarly journals Development and Evaluation of Oleanolic Acid Dosage Forms and Its Derivatives

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Anjie Feng ◽  
Shanjing Yang ◽  
Yue Sun ◽  
Li Zhang ◽  
Fumin Bo ◽  
...  

Oleanolic acid is a pentacyclic triterpenoid compound that exists widely in medicinal herbs and other plants. Because of the extensive pharmacological activity, oleanolic acid has attracted more and more attention. However, the structural characteristics of oleanolic acid prevent it from being directly made into new drugs, which limits the application of oleanolic acid. Through the application of modern preparation techniques and methods, different oleanolic acid dosage forms and derivatives have been designed and synthesized. These techniques can improve the water solubility and bioavailability of oleanolic acid and lay a foundation for the new drug development. In this review, the recent progress in understanding the oleanolic acid dosage forms and its derivatives are discussed. Furthermore, these products were evaluated comprehensively from the perspective of characterization and pharmacokinetics, and this work may provide ideas and references for the development of oleanolic acid preparations.

Author(s):  
Jamal Basha D ◽  
Kumar P R ◽  
Ranganayakulu D

An oleo gum resin guggulu is a product which obtained as a result of gummosis from the bark of Commiphora wightii (Arnott) Bhandari [syn. Commiphoramukul (Hook. Ex Stocks) Family, Burseraceae]. It has been known for its immense applicability in the Ayurveda since time immemorial for the treatment of variety of disorders such as inflammation, gout, rheumatism, impotence, leprosy, obesity, and disorders of lipids metabolism. It is a mixture of phytoconstituents like terpenoids, steroids, flavonoids, guggultetrols, lignans, sugars, and amino acids. This review is an effort to compile all the information available on all of its chemical constituents which are responsible for its therapeutic potential, limitation of guggul extracts and the necessity of novel principles for gum guggul. Nowadays, Guggul is available as the marketed formulation for curing numerous clinical conditions and is accessible in combination with various other ingredients. Though conventional dosage form shows the dominance as patient compliance and easy availability, yet it has found to pose the problems like dose fluctuation, peak-valley effect, non-adjustment of the administered drug, invasiveness etc. Guggul lacks its desired effect due to its low bioavailability and water solubility. This makes it a partial or a deficient therapy for remedy of many signs and symptoms. Novel drug delivery system (NDDS), a new approach and has excluded many of drawbacks exhibited by conventional dosage forms. Some of the novel dosage forms of guggul has been formed like nanoparticles, nanovesicles, gugglusomes and proniosomal gel. But still, the novel formulations for guggul has its less outspread in the market. Guggul can be executed as a profitable drug using NDDS. There is a need to highlight the unidentified and unexplained facts about guggul so as to make it more efficacious and effective in terms of bioavailability and aqueous insolubility.


2020 ◽  
Vol 17 (9) ◽  
pp. 1084-1101
Author(s):  
Tingjuan Wu ◽  
Xu Yao ◽  
Guan Wang ◽  
Xiaohe Liu ◽  
Hongfei Chen ◽  
...  

Background: Oleanolic Acid (OA) is a ubiquitous product of triterpenoid compounds. Due to its inexpensive availability, unique bioactivities, pharmacological effects and non-toxic properties, OA has attracted tremendous interest in the field of drug design and synthesis. Furthermore, many OA derivatives have been developed for ameliorating the poor water solubility and bioavailability. Objective: Over the past few decades, various modifications of the OA framework structure have led to the observation of enhancement in bioactivity. Herein, we focused on the synthesis and medicinal performance of OA derivatives modified on A-ring. Moreover, we clarified the relationship between structures and activities of OA derivatives with different functional groups in A-ring. The future application of OA in the field of drug design and development also was discussed and inferred. Conclusion: This review concluded the novel achievements that could add paramount information to the further study of OA-based drugs.


2001 ◽  
Vol 36 (12) ◽  
pp. 1278-1289
Author(s):  
Danial E. Baker

This monthly feature will help readers keep current on new drugs, new indications and dosage forms, and safety-related changes in labeling or use. Each month, new information will be added to the table (shown in bold type) and older information will be removed. Efforts have been made to ensure the accuracy of the information; however, if there are any questions, let us know at [email protected] .


2005 ◽  
Vol 40 (2) ◽  
pp. 170-183
Author(s):  
Danial E. Baker

This monthly feature will help readers keep current on new drugs, new indications and dosage forms, and safety-related changes in labeling or use. Each month, new information will be added to the table (shown in bold type) and older information will be removed. Efforts have been made to ensure the accuracy of the information; however, if there are any questions, let us know at [email protected] .


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2196 ◽  
Author(s):  
Silvana Alfei ◽  
Anna Maria Schito ◽  
Guendalina Zuccari

Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4957
Author(s):  
Wanda Baer-Dubowska ◽  
Maria Narożna ◽  
Violetta Krajka-Kuźniak

Naturally occurring pentacyclic triterpenoid oleanolic acid (OA) serves as a good scaffold for additional modifications to achieve synthetic derivatives. Therefore, a large number of triterpenoids have been synthetically modified in order to increase their bioactivity and their protective or therapeutic effects. Moreover, attempts were performed to conjugate synthetic triterpenoids with non-steroidal anti-inflammatory drugs (NSAIDs) or other functional groups. Among hundreds of synthesized triterpenoids, still the most promising is 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), which reached clinical trials level of investigations. The new group of synthetic triterpenoids are OA oximes. The most active among them is 3-hydroxyiminoolean-12-en-28-oic acid morpholide, which additionally improves the anti-cancer activity of standard NSAIDs. While targeting the Nrf2 and NF-κB signaling pathways is the main mechanism of synthetic OA derivatives′ anti-inflammatory and anti-cancer activity, most of these compounds exhibit multifunctional activity, and affect cross-talk within the cellular signaling network. This short review updates the earlier data and describes the new OA derivatives and their conjugates in the context of modification of signaling pathways involved in inflammation and cell survival and subsequently in cancer development.


Sign in / Sign up

Export Citation Format

Share Document