scholarly journals Analytical Model and Back-Analysis for Pile-Soil System Behavior under Axial Loading

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Hong-Fa Xu ◽  
Ji-Xiang Zhang ◽  
Xin Liu ◽  
Han-Sheng Geng ◽  
Ke-Liang Li ◽  
...  

The interaction mechanism between piles and soils is very complicated. The load transfer function is generally nonlinear and is affected by factors such as pile side roughness, soil characteristics, section depth, and displacement. Therefore, it is difficult to solve the pile-soil system based on load transfer function. This paper presents a new method to study the soil-pile interaction problem with respect to axial loads. First, the shapes of the axial force-displacement curves at different depths and the displacement distribution curves along pile axis at different pile-top displacements were analyzed. A simple exponential function was taken as relationship model to express the relationship curves between two distribution functions of axial force and displacement along pile shaft obtained by using the geometric drawing method. Second, a new analytical model of the pile-soil system was established based on the basic differential equations for pile-soil load transfer theory and the relationship model and was used to derive the mathematical expressions on the distribution functions of the axial force, the lateral friction, and the displacement along pile shaft and the load transfer function of pile-side. We wrote the MATLAB program for the analytical model to analyze the influence laws of the parameters u and m on the pile-soil system characteristics. Third, the back-analysis method and steps of the pile-soil system characteristics were proposed according to the analytical model. The back-analysis results were in good agreement with the experimental results for the examples. The analysis model provides an effective way for the accurate design of piles under axial loading.

2013 ◽  
Vol 53 (4) ◽  
pp. 596-606 ◽  
Author(s):  
Jaehwan Lee ◽  
Kwangho You ◽  
Sangseom Jeong ◽  
Jaeyoung Kim

2020 ◽  
Vol 3 (2) ◽  
pp. 88
Author(s):  
Mochamad fikri firmansyah Fikri Firmansyah ◽  
Rakha Fausta ◽  
Helmy Darjanto

Developments in the calculation of foundation planning today have produced many methods and formulas for calculating the bearing capacity of foundations, such as the T-Z method, the Tezaghi method, the Mayerhof method, the Tomlison method, and other methods. So the purpose of this study was to determine the bearing capacity from tip movement of the foundation of each load with the T-Z method. The T-Z method explains rationally the mechanism of load transfer using a load transfer function commonly called TZ. In this method the pile foundation will be divided into several segments and the transfer function on each side segment which is a function of the shear strength of the soil and the surface properties of the side pile. From the analysis results of the TZPILE application, the bearing capacity is due to the settlement. At a settlement of 0,0001m; 0.001m; 0.0015m; 0.0025m; and 0.005m get a bearing capacity of 4.31kN; 31.69 kN; 35.6 kN; 43.44 kN; and 60.10kN. And on the reduction of permits on the foundation that occurs according to SNI 8460 - 2017 is 25mm, so the analysis obtained 12mm which still meets the requirements, 12mm get a bearing capacity of 1200kN at the tip of the pile. At a load of 600 kn the head of the pile can be held at a depth 4 meters. And for the maximum bearing capacity of the 18 meter pole, it can whitstand a bearing capacity of 1200 kn.


2009 ◽  
Vol 76 (6) ◽  
Author(s):  
Anthony J. Paris

An elasticity approach to the mechanics of load transfer in cord-reinforced composite materials is developed. Finite cords embedded in an elastic matrix and subjected to axial loading is considered, and the extension-twist coupling of the cords is taken into account. Closed form solutions for the axial force and twisting moment in the cord, the shear stresses at the cord-matrix interface in the axial and circumferential directions, the effective axial modulus of the cord, and the apparent modulus of the cord composite are presented. An example of a cord composite typical of what can be found in steel-belted-radial tires is used to illustrate the results. It was found that large shear stresses occur at the cord-matrix interface in both the axial and circumferential directions at the cord ends and that the effective modulus of the cords may be greatly reduced. As a result, the apparent modulus of the composite may be significantly less than that found by a conventional application of the rule-of-mixtures approach.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7475
Author(s):  
Xiaowei Guo ◽  
Xigui Zheng ◽  
Peng Li ◽  
Rui Lian ◽  
Cancan Liu ◽  
...  

The traditional anchoring method of bolts has insufficient control over the surrounding rock of the coal roadway. Based on this background, full-stress anchoring technology of bolts was proposed. Firstly, a mechanical relationship model of a bolt-drawing, anchoring interface was established to obtain the equations of the axial force and obtain shear stress distribution as well as the decreasing-load transfer law of the anchoring section of bolts. Through studying the prestress-loading experimental device of bolts, we found that increasing the initial preload could increase the axial force under the same conditions and the retarded anchoring section could control the axial-force loss of bolts in the middle of the anchoring section. Under the full-stress anchoring mode, the effect of applying a pre-tightening force was better than that of applying a pre-tightening force under traditional anchoring methods. Moreover, FLAC3D (Fast Lagrangian Analysis of Continua 3D; ITASCA (Ita sca International Inc), Minnesota, USA) numerical simulation calculation was performed. Under the full-stress anchoring mode of bolts, the increased anchoring length reduced the damage of the anchoring section, with a wider control range of the rock formation and higher strength of the compressive-stress anchoring zone. Based on the above research, four methods for applying the full-stress anchoring technology of bolts in engineering were proposed. The full-stress anchoring technology of bolts in the coal roadway has been applied in the support project of the return-air roadway at working face 3204 of the Taitou Coking Coal Mine of the Xiangning Coking Coal Group, Shanxi. The maximum moving distance of the roof and floor of the roadway was reduced from 200 to 42 mm, and the maximum moving distance on both coal sides was reduced from 330 to 86 mm. The full-stress anchoring technology of bolts was able to control the surrounding rock in the coal roadway.


Author(s):  
Emmanuel Oyekanlu ◽  
Jia Uddin

In this chapter, the random forest-based ensemble regression method is used for the prediction of powerline impedance at the powerline communication (PLC) narrowband frequency range. It is discovered that while PLC load transfer function, phase, and frequency are crucial to powerline impedance estimation, the problem of data multicollinearity can adversely impact accurate prediction and lead to excessive mean square error (MSE). High MSE is obtained when multiple transfer functions corresponding to different PLC load transfer functions are used for random forest ensemble regression. Low MSE indicating more accurate impedance prediction is obtained when PLC load transfer function data is selectively used. Using data corresponding to 200, 400, 600, 800, and 1000 W PLC load transfer functions together led to poor impedance prediction, while using lesser amount of carefully selected data led to better impedance prediction. These results show that artificial intelligence (AI) methods such as random forest ensemble regression and deterministic data-optimization approach can be utilized for smart grid (SG) health monitoring applications using PLC-based sensors. Machine learning can also be applied to the design of better powerline communication signal transceivers and equalizers.


Sign in / Sign up

Export Citation Format

Share Document