scholarly journals The Effect of Sex Differences on Endothelial Function and Circulating Endothelial Progenitor Cells in Hypertriglyceridemia

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zi Ren ◽  
Jiayi Guo ◽  
Xingxing Xiao ◽  
Jiana Huang ◽  
Manchao Li ◽  
...  

Background. Men have a higher risk and earlier onset of cardiovascular diseases compared with premenopausal women. Hypertriglyceridemia is an independent risk factor for the occurrence of ischemic heart disease. Endothelial dysfunction is related to the development of ischemic heart disease. Whether sex differences will affect the circulating endothelial progenitor cells (EPCs) and endothelial function in hypertriglyceridemia patients or not is not clear. Methods. Forty premenopausal women and forty age- and body mass index (BMI)-matched men without cardiovascular and metabolic disease were recruited and then divided into four groups: normotriglyceridemic women (women with serum triglycerides level <150 mg/dl), hypertriglyceridemic women (women with serum triglycerides level ≥150 mg/dl), normotriglyceridemic men (men with serum triglycerides level <150 mg/dl), and hypertriglyceridemic men (men with serum triglycerides level ≥150 mg/dl). Peripheral blood was obtained and evaluated. Flow-mediated dilatation (FMD), the number and activity of circulating EPCs, and the levels of nitric oxide (NO), vascular endothelial growth factor (VEGF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) in plasma and culture medium were measured. Results. The number and activity of circulating EPCs, as well as the level of NO in plasma or culture medium, were remarkably increased in premenopausal females compared with those in males both in the hypertriglyceridemic group and the normotriglyceridemic group. The EPC counts and activity, as well as the production of NO, were restored in hypertriglyceridemic premenopausal women compared with those in normal women. However, in hypertriglyceridemic men, the EPC counts and activity, as well as levels of NO, were significantly reduced. The values of VEGF and GM-CSF were without statistical change. Conclusions. The present study firstly demonstrated that there were sex differences in the number and activity of circulating EPCs in hyperglyceridemia patients. Hypertriglyceridemic premenopausal women displayed restored endothelial functions, with elevated NO production, probably mediated by estradiol. We provided a new insight to explore the clinical biomarkers and therapeutic strategies for hypertriglyceridemia-related vascular damage.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Long Peng ◽  
Qianlin Gu ◽  
Zhenhua Huang ◽  
Lijin Zeng ◽  
Chang Chu ◽  
...  

Hyperhomocysteinemia (HHcy) induced endothelial dysfunction is associated with disturbance in circulating endothelial progenitor cells (EPCs). Nevertheless, whether this unfavorable effect of HHcy on circulating EPCs also exists in premenopausal women is still unknown. Therefore, this leaves an area for the investigation of the difference on the number and activity of circulating EPCs in premenopausal women with hyperhomocysteinemia and its underlying mechanism. The number of circulating EPCs was measured by fluorescence-activated cell sorter analysis, as well as DiI-acLDL and lectin fluorescent staining. The migration and proliferation of circulating were evaluated by the Transwell chamber assay and MTT. Additionally, the endothelial function and levels of nitric oxide (NO), VEGF, and GM-CSF in plasma and culture medium were determined. The number or activity of circulating EPCs and flow-mediated dilatation (FMD) in premenopausal women with or without HHcy were higher than those in postmenopausal women. However, no significant effect of HHcy on the number or activity of circulating EPCs in premenopausal women was observed. A similar alteration in NO level between the four groups was observed. There was a correlation between FMD and the number or activity of EPCs, as well as NO level in plasma or secretion by EPCs. For the first time, our findings illuminated the quantitive or qualitative alterations of circulating EPCs and endothelial function in premenopausal patients with HHcy are preserved, which was associated with retained NO production. The recuperated endothelial repair capacity is possibly the potential mechanism interpreting cardiovascular protection in premenopausal women with HHcy.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Melissa A Thal ◽  
Prasanna Krishnamurthy ◽  
Alexander R Mackie ◽  
Eneda Hoxha ◽  
Erin Lambers ◽  
...  

Currently, bone marrow derived endothelial progenitor cells (human CD34+ cells, EPC) are being used clinically to improve vascularization in patients with ischemic heart disease. While it is generally accepted that CD34+ cells predominantly work through a paracrine mechanism, there exists no convincing evidence that these cells trans-differentiate into functional cardiomyocytes (CMC). Since ischemic heart disease leads to substantial loss of CMC, improving cardiomyogenic plasticity of an existing autologous cell therapy is of obvious import. EPC and CMC both differentiate from a common mesodermal progenitor however; during EC-specific lineage differentiation, CMC specific genes are epigenetically silenced. We hypothesized that reprogramming of CD34+ cells using small molecules targeting key epigenetic repressive marks may recapitulate their cardiomyogenic potential. Human CD34+ EPCs were treated with inhibitors of histone deacetylases (valproic acid) for 24 hours followed by an additional 24 hours with the DNA methyltransferase inhibitor (5-Azacytidine). This forty-eight hour treatment led to the reactivation of pluripotency associated and CMC specific mRNA expression while EC specific gene expression was maintained. Intra-myocardial transplantation of a sub-therapeutic dose of reprogrammed CD34+ cells in an acute myocardial infarction mouse model showed significant improvement in LV function compared to the same number of control CD34+ cells that are therapeutically equivalent to no treatment at all. This was histologically supported by de novo CMC differentiation. In addition to increased cardiomyogenic plasticity, drug treatment also enhanced the inherent therapeutic capacity of the CD34+ cells as shown by reduced fibrosis, increased capillary density, increased proliferation, increased cell survival and increased secretion of angiogenic factors. Taken together, our results suggest that epigenetically reprogrammed CD34+ cells are “super-CD34+ cells” that have an enhanced paracrine effect, display a more plastic phenotype and improve post-infarct cardiac repair by both neo-cardiomyogenesis and neovascularization.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Paulo F Leite ◽  
Claudia R Andrade ◽  
Santa Poppe ◽  
Luiz A Cesar ◽  
Silmara Coimbra ◽  
...  

Underlying mechanisms of endothelial dysfunction in obesity are not fully understood. Circulating Endothelial Progenitor Cells (EPCs) are known to promote endothelial repair. Our aim was to assess the number/function of EPCs in morbid obese individuals and its correlation with endothelial function and inflammatory markers. EPCs were isolated from 33 morbid obese patients (age 47±1.8 y; men=34%; BMI=49±2.1 kg/m 2 , metabolic syndrome=84%) and 20 lean controls. Peripheral blood EPC number was significantly reduced in obese patients both with flow cytometry (KDR + /CD34 + ; 0.041±0.04 vs 0.074±0.05 %events, p<0.001) and fluorescence analysis after short-term culture (49±4 vs 28±2 cells/field, p<0.001). The plasma number of primitive CD 133 + cells, and concentrations of VEGF (Elisa) and nitrogen oxides (which potentially recruit EPCs), were similar to control, suggesting that reduction of EPCs occurs distally to early cell differentiation. Importantly, C-Reactive Protein (CRP), robustly increased in obese patients (0.15±0.04 vs 1.3±0.3; p=0.003), was a strong predictor of reduced EPC number at multivariate analysis (r=0.623; p < 0.001). Likewise, the migratory response of EPCs to VEGF in vitro was significantly impaired in obese vs controls, despite similar VEGF receptor numbers. Multivariate analysis suggested potential roles of metabolic syndrome and leptin in such effect. Endothelial function at flow-mediated brachial artery reactivity was markedly reduced (by 60%) in obese patients, and had a significant inverse correlation with EPC number (r= 0.678; p< 0.001). Carotid intimal thickness was also increased in obese patients (0.68±0.02 vs 0.58±0.08; p=0.001). On the other hand, the number of circulating endothelial cells (CD31 + /CD106 + ) was similar in both groups, suggesting that apoptosis was not enhanced in the obese. These results suggest for the first time that reduced number and migratory capacity of EPCs correlate with endothelial dysfunction or increased CRP and may be a key underlying mechanism of vascular complications and atherosclerosis in obesity.


1965 ◽  
Vol 273 (18) ◽  
pp. 947-952 ◽  
Author(s):  
David F. Brown ◽  
Sandra H. Kinch ◽  
Joseph T. Doyle

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shaohong Wu ◽  
Hao He ◽  
Ge-Xiu Liu ◽  
Xiao-Peng Li ◽  
Shun Yao ◽  
...  

Background/Aims. Sexual differences exist in endothelial progenitor cells (EPCs), and various cardiovascular risk factors are associated with the preservation of endothelial function in premenopausal women. However, it is unclear whether differences in endothelial function and circulating EPCs exist between overweight premenopausal women and age-matched men. Methods. We compared EPC counting and functions in normal-weight and overweight premenopausal women and men, evaluated endothelial function in each group, and detected the expression of the guanosine triphosphate cyclohydrolase I (GTPCH I) pathway. Results. The number of EPCs was lower in the male group than in the female group, regardless of normal-weight or overweight status, and there was no significant difference between the different weight groups among females or males. Endothelial function and EPC migration and proliferation were preserved in overweight premenopausal women compared with overweight men as were nitric oxide (NO) levels in plasma and secreted by EPCs. Endothelial function, the circulating EPC population, and NO levels were not different between normal-weight and overweight premenopausal women. Flow-mediated dilatation was significantly correlated with EPC function, plasma NO levels, and EPC-secreted NO. Conclusions. This investigation provides the first evidence for sex-based differences in EPC activity and endothelial function in overweight middle-aged individuals; these differences are associated with alterations in NO production and may partly occur through downregulation of the GTPCH I pathway. The present results provide new insights into the mechanism underlying the preserved endothelial function in overweight premenopausal women and may uncover a potential therapeutic target for endothelial repair in overweight population.


Sign in / Sign up

Export Citation Format

Share Document