scholarly journals A Model with Leaf Area Index and Trunk Diameter for LoRaWAN Radio Propagation in Eastern China Mixed Forest

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yin Wu ◽  
Genwei Guo ◽  
Guiyun Tian ◽  
Wenbo Liu

Internet of Things (IoT) is a very promising technology in forest engineering, especially for the environment and plant growth monitoring. LoRa Wide Area Network (LoRaWAN) is a prevailing choice for the Forestry IoT owing to its low-power and long-range ability. Real-world deployment and network optimization require accurate path-loss modeling, so the LoRaWAN radio channel in the forest is needed to be intensively studied. However, most of the subsistent propagation models do not involve specific forestry environmental parameters. In this paper, two parameters related with the trees are considered: the leaf area index and the tree trunk diameter. Due to the time-changing characteristics of these two items (from spring to winter), an empirical model has been developed through extensive measurement campaigns: Firstly, the channel measurement platform is designed based on a real scene of mixed forest. Secondly, the fading characteristics of the channel transmission for LoRa nodes are tested, and the corresponding model is presented and evaluated. Lastly, an energy harvesting LoRaWAN is deployed and operated in a sampled forest region of Eastern China for environment monitoring based on our propagation model. The results show that 433 MHz LoRa path loss in the mingled forest could be precisely predicted by our proposed model. Moreover, network coverage and energy consumption optimization of the LoRa nodes could be performed, which enables the perpetual development of reliable forestry evolution monitoring system.

2015 ◽  
Vol 9 (1) ◽  
pp. 096085 ◽  
Author(s):  
Zhujun Gu ◽  
G. Arturo Sanchez-Azofeifa ◽  
Jilu Feng ◽  
Sen Cao

2021 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Quanjun Jiao ◽  
Qi Sun ◽  
Bing Zhang ◽  
Wenjiang Huang ◽  
Huichun Ye ◽  
...  

Canopy chlorophyll content (CCC) is an important indicator for crop-growth monitoring and crop productivity estimation. The hybrid method, involving the PROSAIL radiative transfer model and machine learning algorithms, has been widely applied for crop CCC retrieval. However, PROSAIL’s homogeneous canopy hypothesis limits the ability to use the PROSAIL-based CCC estimation across different crops with a row structure. In addition to leaf area index (LAI), average leaf angle (ALA) is the most important canopy structure factor in the PROSAIL model. Under the same LAI, adjustment of the ALA can make a PROSAIL simulation obtain the same canopy gap as the heterogeneous canopy at a specific observation angle. Therefore, parameterization of an adjusted ALA (ALAadj) is an optimal choice to make the PROSAIL model suitable for specific row-planted crops. This paper attempted to improve PROSAIL-based CCC retrieval for different crops, using a random forest algorithm, by introducing the prior knowledge of crop-specific ALAadj. Based on the field reflectance spectrum at nadir, leaf area index, and leaf chlorophyll content, parameterization of the ALAadj in the PROSAIL model for wheat and soybean was carried out. An algorithm integrating the random forest and PROSAIL simulations with prior ALAadj information was developed for wheat and soybean CCC retrieval. Ground-measured CCC measurements were used to validate the CCC retrieved from canopy spectra. The results showed that the ALAadj values (62 degrees for wheat; 45 degrees for soybean) that were parameterized for the PROSAIL model demonstrated good discrimination between the two crops. The proposed algorithm improved the CCC retrieval accuracy for wheat and soybean, regardless of whether continuous visible to near-infrared spectra with 50 bands (RMSE from 39.9 to 32.9 μg cm−2; R2 from 0.67 to 0.76) or discrete spectra with 13 bands (RMSE from 43.9 to 33.7 μg cm−2; R2 from 0.63 to 0.74) and nine bands (RMSE from 45.1 to 37.0 μg cm−2; R2 from 0.61 to 0.71) were used. The proposed hybrid algorithm, based on PROSAIL simulations with ALAadj, has the potential for satellite-based CCC estimation across different crop types, and it also has a good reference value for the retrieval of other crop parameters.


2020 ◽  
Vol 9 (11) ◽  
pp. 622
Author(s):  
Irene Chrysafis ◽  
Georgios Korakis ◽  
Apostolos P. Kyriazopoulos ◽  
Giorgos Mallinis

Leaf area index (LAI) is a crucial biophysical indicator for assessing and monitoring the structure and functions of forest ecosystems. Improvements in remote sensing instrumental characteristics and the availability of more efficient statistical algorithms, elevate the potential for more accurate models of vegetation biophysical properties including LAI. The aim of this study was to assess the spectral information of Sentinel-2 MSI satellite imagery for the retrieval of LAI over a mixed forest ecosystem located in northwest Greece. Forty-eight field plots were visited for the collection of ground LAI measurements using an ACCUPAR LP-80: PAR & LAI Ceptometer. Spectral bands and spectral indices were used for LAI model development using the Gaussian processes regression (GPR) algorithm. A variable selection procedure was applied to improve the model’s prediction accuracy, and variable importance was investigated for identifying the most informative variables. The model resulting from spectral indices’ variables selection produced the most precise predictions of LAI with a coefficient of determination of 0.854. Shortwave infrared bands and the normalized canopy index (NCI) were identified as the most important features for LAI prediction.


2003 ◽  
Vol 33 (10) ◽  
pp. 2007-2018 ◽  
Author(s):  
S N Burrows ◽  
S T Gower ◽  
J M Norman ◽  
G Diak ◽  
D S Mackay ◽  
...  

Quantifying forest net primary production (NPP) is critical to understanding the global carbon cycle because forests are responsible for a large portion of the total terrestrial NPP. The objectives of this study were to measure above ground NPP (NPPA) for a land surface in northern Wisconsin, examine the spatial patterns of NPPA and its components, and correlate NPPA with vegetation cover types and leaf area index. Mean NPPA for aspen, hardwoods, mixed forest, upland conifers, nonforested wetlands, and forested wetlands was 7.8, 7.2, 5.7, 4.9, 5.0, and 4.5 t dry mass·ha–1·year–1, respectively. There were significant (p = 0.01) spatial patterns in wood, foliage, and understory NPP components and NPPA (p = 0.03) when the vegetation cover type was included in the model. The spatial range estimates for the three NPP components and NPPA differed significantly from each other, suggesting that different factors are influencing the components of NPP. NPPA was significantly correlated with leaf area index (p = 0.01) for the major vegetation cover types. The mean NPPA for the 3 km × 2 km site was 5.8 t dry mass·ha–1·year–1.


2019 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Naichen Xing ◽  
Wenjiang Huang ◽  
Qiaoyun Xie ◽  
Yue Shi ◽  
Huichun Ye ◽  
...  

Leaf area index (LAI) is a key parameter in plant growth monitoring. For several decades, vegetation indices-based empirical method has been widely-accepted in LAI retrieval. A growing number of spectral indices have been proposed to tailor LAI estimations, however, saturation effect has long been an obstacle. In this paper, we classify the selected 14 vegetation indices into five groups according to their characteristics. In this study, we proposed a new index for LAI retrieval-transformed triangular vegetation index (TTVI), which replaces NIR and red bands of triangular vegetation index (TVI) into NIR and red-edge bands. All fifteen indices were calculated and analyzed with both hyperspectral and multispectral data. Best-fit models and k-fold cross-validation were conducted. The results showed that TTVI performed the best predictive power of LAI for both hyperspectral and multispectral data, and mitigated the saturation effect. The R2 and RMSE values were 0.60, 1.12; 0.59, 1.15, respectively. Besides, TTVI showed high estimation accuracy for sparse (LAI < 4) and dense canopies (LAI > 4). Our study provided the value of the Red-edge bands of the Sentinel-2 satellite sensors in crop LAI retrieval, and demonstrated that the new index TTVI is applicable to inverse LAI for both low-to-moderate and moderate-to-high vegetation cover.


2005 ◽  
Vol 15 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Jianjun Jiang ◽  
Suozhong Chen ◽  
Shunxian Cao ◽  
Hongan Wu ◽  
Li Zhang ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 331
Author(s):  
Xuewei Zhang ◽  
Kefei Zhang ◽  
Yaqin Sun ◽  
Yindi Zhao ◽  
Huifu Zhuang ◽  
...  

The leaf area index (LAI) is of great significance for crop growth monitoring. Recently, unmanned aerial systems (UASs) have experienced rapid development and can provide critical data support for crop LAI monitoring. This study investigates the effects of combining spectral and texture features extracted from UAS multispectral imagery on maize LAI estimation. Multispectral images and in situ maize LAI were collected from test sites in Tongshan, Xuzhou, Jiangsu Province, China. The spectral and texture features of UAS multispectral remote sensing images are extracted using the vegetation indices (VIs) and the gray-level co-occurrence matrix (GLCM), respectively. Normalized texture indices (NDTIs), ratio texture indices (RTIs), and difference texture indices (DTIs) are calculated using two GLCM-based textures to express the influence of two different texture features on LAI monitoring at the same time. The remote sensing features are prescreened through correlation analysis. Different data dimensionality reduction or feature selection methods, including stepwise selection (ST), principal component analysis (PCA), and ST combined with PCA (ST_PCA), are coupled with support vector regression (SVR), random forest (RF), and multiple linear regression (MLR) to build the maize LAI estimation models. The results reveal that ST_PCA coupled with SVR has better performance, in terms of the VIs + DTIs (R2 = 0.876, RMSE = 0.239) and VIs + NDTIs (R2 = 0.877, RMSE = 0.236). This study introduces the potential of different texture indices for maize LAI monitoring and demonstrates the promising solution of using ST_PCA to realize the combining of spectral and texture features for improving the estimation accuracy of maize LAI.


2020 ◽  
Author(s):  
Hongmin Zhou ◽  
Guodong Zhang ◽  
Changjing Wang ◽  
Jindi Wang

&lt;p&gt;Leaf area index (LAI) is one of the most important biophysical variables for regulating the physiological processes of vegetation canopy. Time series high-resolution LAI data is critical for vegetation growth monitoring, surface process simulation and global change research. However, there are no high-resolution LAI data products that are continuous in time and space. In this paper, we use MODIS LAI products and Landsat surface reflectance data to generate time series high-resolution LAI datasets from 2000 to 2018 in Saihanba based on the ensemble kalman filter, and uses time-series LAI data to monitor surface vegetation changes according to the Prophet model. Firstly, the multi-step Savitzky&amp;#8211;Golay filtering algorithm is used to smooth the MODIS LAI data, and the upper envelope of time series LAI is generated. A dynamic model is constructed according to the trend of LAI upper envelope to provide the short-range forecast of LAI. Then the ground measured LAI data and the corresponding Landsat reflectance data are used to train a Back Propagation neural network. High-resolution LAI data from BP model is used to update the dynamic model in real time to generate high-resolution time series LAI data based on EnKF. Finally, the time series LAI data is used as the input of Prophet deep learning model to obtain the LAI time series prediction values of a certain year. Comparing the prediction results with the LAI of current year, the correlation coefficient and the root mean square error distribution maps can be obtained, a support vector machine method is used to classify the disturbed pixels and the normal pixels. The LAI time series estimation has a high accuracy of R&amp;#178;larger than 0.90, and RMSE less than 0.54. The disturbance monitoring results indicate that vegetation in 2009, 2010, 2013, 2014, 2015, 2017 is seriously disturbed, Variation of meteorological conditions and deforest contributes heavily to the disturbance.&lt;/p&gt;


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xuezhen Zhang ◽  
Qiuhong Tang

Using the coupled WRF-Noah model, we conducted two experiments to investigate impacts of the interannual variability of leaf area index (LAI) on the surface air temperature (SAT) in eastern China. The Moderate Resolution Imaging Spectroradiometer (MODIS) observed dynamic LAI data from 2002 to 2009 were used in one modeling experiment, and the climatological seasonal cycle of the MODIS LAI was used in the other experiment. The results show that the use of dynamic LAI improves model performance. Compared with the use of climatological LAI, the use of dynamic LAI may reduce the warm (cool) bias in the years with large positive (negative) LAI anomalies. The reduction of the warm bias results from the modeled cooling effect of LAI increase through reducing canopy resistance, promoting transpiration, and decreasing sensible heat flux. Conversely, the reduction of cool bias is a result of the warming effect of negative anomaly of LAI. The use of dynamic LAI can improve model performance in summer and to a lesser extent, spring and autumn. Moreover, the dynamic LAI exerts a detectable influence on SAT in the WRF model when the LAI anomaly is at least 20% of the climatological LAI.


Sign in / Sign up

Export Citation Format

Share Document