scholarly journals Laboratory Evaluation of the Performance of Recycled Aggregate Concrete Containing Construction and Stone Factories Waste in Terms of Compressive and Tensile Strength

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ashkan Rah Anjam ◽  
Hadi Faghihmaleki

Nowadays, the rapid growth of waste production and, especially, construction wastes has become one of the main problems in societies. In the world, reinforced concrete structures are destructed for different reasons. These destructions generate increasing values of waste. Furthermore, there are several stone factories in every region that produce a large volume of decorative construction stone wastes. This experimental study has investigated the effect of using recycled aggregates of construction and stone factory wastes in concrete production. Different tests were performed on concrete samples in fresh state (slump) and hardened concrete (compressive and tensile strength and modulus of elasticity). The optimal percentage for replacement of each of the recycled materials was determined based on comparing the results of laboratory tests. Finally, a proper mix design was proposed for both recycled aggregate samples, and a comprehensive report of the results was also provided.

Author(s):  
Sharifah Salwa Mohd Zuki ◽  
◽  
Shahiron Shahidan ◽  
Shivaraj Subramaniam ◽  
◽  
...  

This paper discussed the recycled aggregates produced from construction and demolition waste and their utilization in concrete construction. Along with a brief overview of the engineering properties of recycled aggregates, the paper also summarizes the effect and use of recycled aggregates on the properties of fresh and hardened concrete. The recycled aggregates were treated with epoxy resin to reduce the water absorptions with different percentages of resin such as 0%, 25%, 50%, 75%, and 100%. Epoxy resin is widely used in recent years owing to the enhancing of mechanical and durability of the concrete. This research also showed, recycled aggregate concrete are close proximity to normal concrete in terms of split tensile strength, compression strength and wet density. The low usage of resin was obtained good strength concrete compared to high percentage contained treated aggregates due to low bonding between material.


Author(s):  
Suhail Mushtaq Khan

Recycled aggregates are those crushed cement concrete or asphalt pavement which comes out from the construction debris which is reused in construction. They are made from the reprocessing of materials which have been used in previous constructions. This paper discusses about the study of properties of recycled aggregates from the sources which has already been published. The results are that 100% replacement of natural aggregate by recycled concrete aggregate effect on chloride ions resistance, it plays negative effects on durability of recycled concrete aggregates, and addition of fiber in recycled aggregate concrete mixture gave more effective in the performance of concrete. On experimental study of recycled aggregate, compressive, flexural and split tensile strength of the recycled aggregate were found to be lower than that of the natural aggregate. Use of recycled aggregate in a new concrete production is still limited. Recommendation of introduction of recycled aggregates standard is required for the materials to be used successfully in future. Gaps in literature reviews are also included in this paper.


Recycled aggregates (RCA) are the aggregates which are made up of crushed, inorganic particles that are obtained from the construction demolition debris. Now a day’s protection of environment is the ultimate challenge to the society. So the usage of RCA’s is the best alternative for the aggregates which are obtained naturally in the construction activity. The scope of using these recycled concrete aggregates is increasing day by day. It reduces the cost effectively as we are using waste concrete as recycled aggregates. The main focus of this paper is to use find the strength qualities of recycled aggregates so as to use it as an alternative for the natural aggregates in high strength concrete for various construction activities. Comparison of workability, compressive strength, tensile strength, elastic modulus and flexural strength of recycled aggregate concrete is made with natural aggregate concrete. Here M25 grade concrete is taken and the natural aggregates were replaced with recycled aggregates in various percentages of 0%, 25%, 50%, 75% and 100%. The mix design for these replacement ratios are done by using code of IS 10262-2009. In order to determine the properties which were mentioned above a total of 60 cubes, 10 beams and 40 cylinders were casted. The compressive strength and tensile strength of RCA concrete have been determined for 7 days and 28 days where as the modulus of elasticity and the flexural strength of RCA concrete are determined after curing for the period of 28 days. The tests done on RCA concrete are compared with concrete which is obtained by natural aggregates As per IS codification the parameters which were determined are reducing moderately as the amount of aggregates which are recycled is being raised


2013 ◽  
Vol 423-426 ◽  
pp. 1072-1075
Author(s):  
Xin Hua Zhang ◽  
Sai Tian ◽  
Huai Ru Dai ◽  
Wei Lin ◽  
Zhi Chun Yao ◽  
...  

This paper discusses waste production of recycled aggregate concrete is used as the recycled concrete, experiment with different recycled aggregate instead of natural aggregate, the ratio of recycled concrete workability and compressive strength etc performance compared with ordinary concrete, analyzing the change of the recycled aggregate replacement rate on the influence of concrete strength.


2012 ◽  
Vol 5 (5) ◽  
pp. 692-701 ◽  
Author(s):  
J. J. L. Tenório ◽  
P. C. C. Gomes ◽  
C. C. Rodrigues ◽  
T. F. F. de Alencar

This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC) for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW), which were divided into recycled sand (fine) and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW). The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.


2020 ◽  
Vol 15 (2) ◽  
pp. 57-69
Author(s):  
Daniel Hatungimana ◽  
Şemsi Yazıcı ◽  
Ali Mardani-Aghabaglou

ABSTRACT The possibility of the use of recycled aggregates from the construction industry in green concrete production is of increasing importance to reduce the negative environmental impact associated with construction and demolition wastes. The objective of this study is to investigate the effect of recycled concrete aggregate (RCA) quality on the properties of hardened concrete properties such as compressive strength, splitting tensile strength, density, water absorption capacity and porosity accessible to water. The RCA used in this study was obtained from the crushing of waste concrete with two different compressive strengths (LRCA obtained from the crushing of waste concrete having compressive strengths below 30 MPa and HRCA obtained from the crushing of waste concrete having compressive strengths above 30 MPa). The natural coarse limestone aggregate was 100% replaced with coarse LRCA and HRCA. As a result of the study, the use of 100% HRCA and %100 LRCA instead of limestone coarse aggregate in the concrete adversely affected its mechanical and physical properties. In addition, HRCA showed better performance in terms of compressive strength, tensile strength, water absorption and porosity compared to the use of LRCA. Furthermore, the percentage of adhered mortar on the surface of LRCA and HRCA was analyzed using a computerized micro tomography device, and it was found that the percentages of attached mortar and aggregates are 61% and 35.5% for LRCA, whilst the attached mortar and aggregate contents for HRCA are 45.9% and 53.7%, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Luis F. Jiménez ◽  
Eric I. Moreno

The use of recycled aggregates in structural concrete production has the inconvenience of increasing the fluid transport properties, such as porosity, sorptivity, and permeability, which reduces the resistance against penetration of environmental loads such as carbon dioxide and chloride ion. In this paper, behavior of ten concrete mixtures with different percentages of coarse aggregate replacement was studied. The recycled material was recovered by crushing of concrete rubble and had high absorption values. The results showed that it is possible to achieve good resistance to carbonation and chloride penetration with up to 50% replacement of recycled coarse aggregate for 0.5 water/cement ratio. Finally, new indexes for porosity and sorptivity were proposed to assess the quality of concrete.


2019 ◽  
Vol 19 (4) ◽  
pp. 594-613 ◽  
Author(s):  
Emmanuel Ejiofor Anike ◽  
Messaoud Saidani ◽  
Eshmaiel Ganjian ◽  
Mark Tyrer ◽  
Adegoke Omotayo Olubanwo

Purpose This paper aims to review the effect of using recycled aggregates (RA) on the properties of recycled aggregate concrete (RAC) following the steady rise in global demand for concrete and the large generation of construction and demolition waste. Design/methodology/approach This study reviewed relevant literature of research work carried out by previous researchers, leading to a deeper understanding of the properties of both RA and RAC. The properties of RA and RAC reported in the various studies were then compared to their corresponding natural aggregate (NA) and natural aggregate concrete, as well as the specifications provided in different codes of practice. In addition, the mix design methods appropriate to RAC and the cost implication of using RA were reviewed. Findings Findings show that the contribution of RA to strength appears inferior in comparison to NA. The shortcoming is attributed to the mortar attached to the RA, which raises its water absorption capacity and lowers its density relative to those of NA. However, it has been reported that the use of regulated quantity of RA, new mixing and proportioning methods, the addition of admixtures and strengthening materials such as steel fibres, can improve both mechanical and durability properties of RAC. Cost evaluation also showed that some savings can be realized by using RA instead of NA. Originality/value This research serves as a guide for future works and suggests that the use of RA as aggregate in new concrete is technically possible, depending on the mix design method adopted.


2021 ◽  
Vol 1 (2) ◽  
pp. 26-34
Author(s):  
Gökhan KAPLAN

The greatest frequently applied construction substantial in the construction sector is concrete. Natural resources are mostly used in concrete production. While environmental resources are being consumed, concrete environmental pollution increases during urban transformation or reconstruction. In sustainable life, environmental damage caused by construction demolition wastes necessitates the use of recovered aggregate. Recycled aggregate is a term used to depict squashed solid, mortar, blocks or black-top from development trash that is reused in other structure ventures. Reused total is delivered by pounding annihilated waste to recover the total. For as far back as not many decades the accessibility of Construction and demolition waste has expanded so a lot of that the solid business has started using it thusly decreasing the number of totals. The goal is to examine the physical properties, (grain size distribution, density and water absorption) and mechanical properties, (for example, compressive strength, flexural strength, modulus of elasticity and splitting tensile strength) and durability properties, (for example, sulfate resistance, freezing and thawing resistance, acid resistance, high temperature effect and abrasion resistance) of recycled aggregate. It is seen that the mechanical and durability conduct of recycled aggregate concrete is optional to that of standard concrete yet with the utilizing various admixture and unique blending approach, required properties can be accomplished.


2021 ◽  
Vol 11 (23) ◽  
pp. 11274
Author(s):  
Haneol Jang ◽  
Jeonghyun Kim ◽  
Alena Sicakova

In this paper, the effect of the original aggregate size of the recycled aggregate on the mechanical properties of the recycled aggregate concrete was evaluated. A series of concretes were produced in which natural aggregates, recycled aggregates, and original aggregates in recycled aggregates were matched for a single particle size distribution curve. The replacement levels of recycled aggregate were 25% and 50%, and equivalent mortar volume mix design was applied for recycled aggregate concrete. The results show that the mechanical strength of recycled aggregate concrete increases with increasing original aggregate size. This effect was observed to be greater in concrete using recycled aggregate with a high residual mortar content.


Sign in / Sign up

Export Citation Format

Share Document