scholarly journals TLFW: A Three-Layer Framework in Wireless Rechargeable Sensor Network with a Mobile Base Station

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Anwen Wang ◽  
Xianjia Meng ◽  
Lvju Wang ◽  
Xiang Ji ◽  
Hao Chen ◽  
...  

Wireless sensor networks as the base support for the Internet of things have been a large number of popularity and application. Such as intelligent agriculture, we have to use the sensor network to obtain the growing environment data of crops and others. However, the difficulty of power supply of wireless nodes has seriously hindered the application and development of Internet of things. In order to solve this problem, people use low-power sleep scheduling and other energy-saving methods on the nodes. Although these methods can prolong the working time of nodes, they will eventually become invalid because of the exhaustion of energy. The use of solar energy, wind energy, and wireless signals in the environment to obtain energy is another way to solve the energy problem of nodes. However, these methods are affected by weather, environment, and other factors, and they are unstable. Thus, the discontinuity work of the node is caused. In recent years, the development of wireless power transfer (WPT) has brought another solution to this problem. In this paper, a three-layer framework is proposed for mobile station data collection in rechargeable wireless sensor networks to keep the node running forever, named TLFW which includes the sensor layer, cluster head layer, and mobile station layer. And the framework can minimize the total energy consumption of the system. The simulation results show that the scheme can reduce the energy consumption of the entire system, compared with a Mobile Station in a Rechargeable Sensor Network (MSiRSN).

Author(s):  
Mohammad Sedighimanesh ◽  
Hesam Zandhesami ◽  
Ali Sedighimanesh

Background: Wireless sensor networks are considered as one of the 21st century's most important technologies. Sensors in wireless sensor networks usually have limited and sometimes non-rechargeable batteries, which they are supposed to be preserved for months or even years. That's why the energy consumption in these networks is of a great importance. Objective: One way to improve energy consumption in a wireless sensor network is to use clustering. In clustered networks, one node is known as the cluster head and other nodes as normal members, which normal nodes send the collected data to the cluster head, and the cluster head sends the information to the base station either by a single step or by multiple steps. Method: Using clustering simplifies resource management and increases scalability, reliability, and the network lifetime. Although the cluster formation involves a time- overhead and how to choose the cluster head is another problem, but its advantages are more than its disadvantages. : The primary aim of this study is to offer a solution to reduce energy consumption in the sensor network. In this study, during the selection of cluster heads, Honeybee Algorithm is used and also for routing, Harmonic Search Algorithm is used. In this paper, the simulation is performed by using MATLAB software and the proposed method is compared with the Low Energy Adaptive Clustering Hierarchy (LEACH) and the multi-objective fuzzy clustering algorithm (MOFCA). Result and Conclusion: By simulations of this study, we conclude that this research has remarkably increased the network lifetime with respect to EECS, LEACH, and MOFCA algorithms. In view of the energy constraints of the wireless sensor network and the non-rechargeable batteries in most cases, providing such solutions and using metaheuristic algorithms can result in a significant reduction in energy consumption and, consequently, increase in the network lifetime.


2017 ◽  
Vol 13 (05) ◽  
pp. 122 ◽  
Author(s):  
Bo Feng ◽  
Wei Tang ◽  
Guofa Guo

In wireless sensor networks, the nodes around the base station have higher energy consumption due to the forwarding task of all the detected data. In order to balance the energy consumption of the nodes around the base station, a reasonable and effective mechanism of node rotation dormancy is put forward. In this way, a large number of redundant nodes in the network are in a dormant state, so as to reduce the load of important nodes around the base station. The problems of the redundant nodes in the sensor network are analyzed, and a new method is proposed to distinguish the redundant nodes based on local Delaunay triangulation and multi node election dormancy mechanism. The experimental results showed that this method could effectively distinguish the redundant nodes in the network; at the same time, through the multi round election mechanism, parts of redundant nodes are made dormant. In summary, they can reduce the network energy consumption on the condition of guaranteeing the original coverage.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 403 ◽  
Author(s):  
Goran Popovic ◽  
Goran Djukanovic ◽  
Dimitris Kanellopoulos

Clustering achieves energy efficiency and scalable performance in wireless sensor networks (WSNs). A cluster is formed of several sensor nodes, one of them selected as the cluster head (CH). A CH collects information from the cluster members and sends aggregated data to the base station or another CH. In such a hierarchical WSN, some nodes are possibly moveable or nomadic (relocated periodically), while others are static. The mobility of sensor nodes can improve network performance and prolong network lifetime. This paper presents the idea of mobile, solar-powered CHs that relocate themselves inside clusters in such a way that the total energy consumption in the network is reduced and the network lifetime is extended. The positioning of CHs is made in each round based on a selfish herd hypothesis, where the leader retreats to the center of gravity. Based on this idea, the CH-active algorithm is proposed in this study. Simulation results show that this algorithm has benefits in terms of network lifetime and in the prolongation of the duration of network stability period.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


2014 ◽  
Vol 626 ◽  
pp. 20-25
Author(s):  
K. Kalaiselvi ◽  
G.R. Suresh

In wireless sensor networks Energy-efficient routing is an important issue due to the limited battery power within the network, Energy consumption is one of the important performance factors. Specifically for the election of cluster head selection and distance between the cluster head node and base station. The main objective of this proposed system is to reduce the energy consumption and prolong the network lifetime. This paper introduces a new clustering algorithm for energy efficient routing based on a cluster head selection


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772096804
Author(s):  
Inam Ul Haq ◽  
Qaisar Javaid ◽  
Zahid Ullah ◽  
Zafar Zaheer ◽  
Mohsin Raza ◽  
...  

Internet of things have emerged enough due to its applications in a wide range of fields such as governance, industry, healthcare, and smart environments (home, smart, cities, and so on). Internet of things–based networks connect smart devices ubiquitously. In such scenario, the role of wireless sensor networks becomes vital in order to enhance the ubiquity of the Internet of things devices with lower cost and easy deployment. The sensor nodes are limited in terms of energy storage, processing, and data storage capabilities, while their radio frequencies are very sensitive to noise and interference. These factors consequently threaten the energy consumption, lifetime, and throughput of network. One way to cope with energy consumption issue is energy harvesting techniques used in wireless sensor network–based Internet of things. However, some recent studies addressed the problems of clustering and routing in energy harvesting wireless sensor networks which either concentrate on energy efficiency or quality of service. There is a need of an adequate approach that can perform efficiently in terms of energy utilization as well as to ensure the quality of service. In this article, a novel protocol named energy-efficient multi-attribute-based clustering scheme (E2-MACH) is proposed which addresses the energy efficiency and communication reliability. It uses selection criteria of reliable cluster head based on a weighted function defined by multiple attributes such as link statistics, neighborhood density, current residual energy, and the rate of energy harvesting of nodes. The consideration of such parameters in cluster head selection helps to preserve the node’s energy and reduce its consumption by sending data over links possessing better signal-to-noise ratio and hence ensure minimum packet loss. The minimized packet loss ratio contributes toward enhanced network throughput, energy consumption, and lifetime with better service availability for Internet of things applications. A set of experiments using network simulator 2 revealed that our proposed approach outperforms the state-of-the-art low-energy adaptive clustering hierarchy and other recent protocols in terms of first-node death, overall energy consumption, and network throughput.


Sign in / Sign up

Export Citation Format

Share Document