scholarly journals Complementary Color Barcode-Based Optical Camera Communications

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Sung-Yoon Jung ◽  
Ji-Hwan Lee ◽  
Wonwoo Nam ◽  
Byung Wook Kim

Electronic displays and cameras can provide an intuitive, simple communications interface without dependence on additional wireless interfaces or the Internet infrastructure. In this paper, we design a complementary color barcode-based optical camera communication (CCB-OCC) system to provide an easy-to-use communication capability from an electronic display-to-camera (D2C) link. The proposed method encodes information into specially designed color barcodes and transmits it in a format perceptually invisible to humans but detectable by camera-equipped devices. In addition, we propose a new transmission packet design that contains pilot symbols to synchronize symbol packets and estimate the D2C channel link for calibrating captured images caused by irregular differences between the sending color and the receiving color in the D2C link. Experimental results verify the feasibility of the CCB-OCC scheme for short-range communications to offer additional information which shows a new possibility in designing a D2C communication system with robust to environmental change, easy-to-use, and simple implementation.

Author(s):  
K. Velmurugan ◽  
M.A. Maluk Mohamed

One of the vital reasons for reverse engineering legacy software systems is to make it inter-operable. Moreover, technological advancements and changes in usability also motivate reverse engineering to exploit new features and incorporate them in legacy software systems. In this context, Web services are emerging and evolving as solutions for software systems for business applications in terms of facilitating interactions between business to business and business to customers. Web services are gaining significance due to inherent features like interoperability, simple implementation, and exploiting the boom in Internet infrastructure. Thus, this work proposes a framework based strategy using .net for effortless migration from legacy software systems to Web services. Further, this work also proposes that software metrics observed during the process of reverse engineering facilitate design of Web services from legacy systems.


2009 ◽  
pp. 1135-1142
Author(s):  
Victor I. Khashchanskiy ◽  
Andrei L. Kustov

One of the applications of m-commerce is mobile authorization, that is, rights distribution to mobile users by sending authorization data (a token) to the mobile devices. For example, a supermarket can distribute personalized discount coupon tokens to its customers via SMS. The token can be a symbol string that the customers will present while paying for the goods at the cash desk. The example can be elaborated further—using location information from the mobile operator, the coupons can only be sent to, for example, those customers who are in close vicinity of the mall on Saturday (this will of course require customers to allow disclosing their location). In the example above, the token is used through its manual presentation. However, most interesting is the case when the service is released automatically, without a need for a human operator validating the token and releasing a service to the customer; for example, a vending machine at the automatic gas station must work automatically to be commercially viable. To succeed, this approach requires a convenient and uniform way of delivering authorization information to the point of service—it is obvious that an average user will only have enough patience for very simple operations. And this presents a problem. There are basically only three available local (i.e., short-range) wireless interfaces (LWI): WLAN, IR, and Bluetooth, which do not cover the whole range of mobile devices. WLAN has not gained popularity yet, while IR is gradually disappearing. Bluetooth is the most frequently used of them, but still it is not available in all phones. For every particular device it is possible to send a token out using some combination of LWI and presentation technology, but there is no common and easy-to-use combination. This is a threshold for the development of services. Taking a deeper look at the mobile devices, we can find one more non-standard simplex LWI, which is present in all devices—acoustical, where the transmitter is a phone ringer. Token presentation through acoustic interface along with general solution of token delivery via SIM Toolkit technology (see 3GPP TS, 1999) was presented by Khashchanskiy and Kustov (2001). However, mobile operators have not taken SIM Toolkit into any serious use, and the only alternative way of delivering sound tokens into the phone-ringing tone customization technology was not available for a broad range of devices at the time the aforementioned paper was published. Quite unexpectedly, recent development of mobile phone technologies gives a chance for sound tokens to become a better solution for the aforementioned problem, compared with other LWI. Namely, it can be stated that every contemporary mobile device supports either remote customization of ringing tones, or MMS, and in the majority of cases, even both, thus facilitating sound token receiving over the air. Most phone models can playback a received token with only a few button-clicks. Thus, a sound token-based solution meets the set criteria better than any other LWI. Token delivery works the same way for virtually all phones, and token presentation is simple. In this article we study the sound token solution practical implementation in detail. First, we select optimal modulation, encoding, and recognition algorithm, and we estimate data rate. Then we present results of experimental verification.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012023
Author(s):  
Yidan Song ◽  
Shangshu Guan ◽  
Haijiang Yao ◽  
Shun Tao

Abstract Widely used LED electronic displays have high requirements for power quality. Because of the status quo of LED technology update and the lack of related experimental work, this paper first analyzes the hardware composition of LED electronic display and switching power supply module. In addition, the paper points out that the transient tolerance of LED screens is mainly determined by switching power supply modules. Then, a test platform was built, and a certain type of LED screen was selected to investigate the influence of voltage temporary drop value and duration, phase jump, and initial Angle of temporary drop on the tolerance of LED electronic display. It provides data support for evaluating and managing the effects of voltage sags on LED electronic displays and the design of power supply schemes.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3587
Author(s):  
Ivana Čuljak ◽  
Željka Lučev Vasić ◽  
Hrvoje Mihaldinec ◽  
Hrvoje Džapo

In recent years there has been an increasing need for miniature, low-cost, commercially accessible, and user-friendly sensor solutions for wireless body area networks (WBAN), which has led to the adoption of new physical communication interfaces providing distinctive advantages over traditional wireless technologies. Ultra-wideband (UWB) and intrabody communication (IBC) have been the subject of intensive research in recent years due to their promising characteristics as means for short-range, low-power, and low-data-rate wireless interfaces for interconnection of various sensors and devices placed on, inside, or in the close vicinity of the human body. The need for safe and standardized solutions has resulted in the development of two relevant standards, IEEE 802.15.4 (for UWB) and IEEE 802.15.6 (for UWB and IBC), respectively. This paper presents an in-depth overview of recent studies and advances in the field of application of UWB and IBC technologies for wireless body sensor communication systems.


1981 ◽  
Vol 25 (1) ◽  
pp. 228-232
Author(s):  
Michael A. Companion ◽  
Raymond L. Wasson

To reduce pilot workload and increase safety, transport aircraft flight station designers have begun to introduce cathode ray tube (CRT) displays into their designs. This paper examines the concept and questions pertaining to the possible application of large electronic display devices, specifically 33.0- and 48.3-cm CRTs, to future flight station design to improve pilot performance. Large CRTs offer many intriguing possibilities such as multisegment displays and variable format size (zoom), as well as the larger display area necessary to make innovative 3-dimensional (D) formats and touch panel overlays more feasible and usable. Lockheed-Georgia Company, in conjunction with NASA, has established a program to examine these advanced display concepts for future transport aircraft flight station design.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 180 ◽  
Author(s):  
Nicolas Le Sommer ◽  
Yves Mahéo ◽  
Fadhlallah Baklouti

Distributed computing pervasiveness is nowadays undeniable, and will continue to grow as the usage of device-to-device communications and the number of connected things populating our daily environment increase. Due to the connectivity disruptions induced by the mobility of devices communicating through short-range wireless interfaces and by the sleep phases of devices, it is often difficult to exploit the resources offered by the connected things forming these pervasive environments through the services they provide, and even harder to compose these services together so as to provide users with more useful and sophisticated services. This paper presents a service composition system adapted to opportunistic networks. This composition system relies on a service provision platform that exploits opportunistic networking and computing techniques to cope with connectivity disruptions. Service composition is performed dynamically, according to users’ interests. A multi-strategy scheme is used for the invocation of composite services, and a recovery mechanism is possible through partial invocation. This paper also presents the evaluation of the proposed composition system on two different scenarios: one involving people roaming in an open area, and another one involving spectators of a running event.


1955 ◽  
Vol 36 (10) ◽  
pp. 519-527 ◽  
Author(s):  
G. E. Stout ◽  
H. W. Hiser

Detailed field data and radar observations were studied for a period in which five out of eight storms produced considerable damage. It appears that in many cases the radar offers additional information so that it might be useful in short range forecasting. Certain limitations are noted. Additional data and research are needed before the complete utilization of radar in the detection of severe storms can be established.


Author(s):  
V. Khashchanskiy

One of the applications of m-commerce is mobile authorization, that is, rights distribution to mobile users by sending authorization data (a token) to the mobile devices. For example, a supermarket can distribute personalized discount coupon tokens to its customers via SMS. The token can be a symbol string that the customers will present while paying for the goods at the cash desk. The example can be elaborated further—using location information from the mobile operator, the coupons can only be sent to, for example, those customers who are in close vicinity of the mall on Saturday (this will of course require customers to allow disclosing their location).In the example above, the token is used through its manual presentation. However, most interesting is the case when the service is released automatically, without a need for a human operator validating the token and releasing a service to the customer; for example, a vending machine at the automatic gas station must work automatically to be commercially viable. To succeed, this approach requires a convenient and uniform way of delivering authorization information to the point of service—it is obvious that an average user will only have enough patience for very simple operations. And this presents a problem. There are basically only three available local (i.e., short-range) wireless interfaces (LWI): WLAN, IR, and Bluetooth, which do not cover the whole range of mobile devices. WLAN has not gained popularity yet, while IR is gradually disappearing. Bluetooth is the most frequently used of them, but still it is not available in all phones. For every particular device it is possible to send a token out using some combination of LWI and presentation technology, but there is no common and easy-to-use combination. This is a threshold for the development of services. Taking a deeper look at the mobile devices, we can find one more non-standard simplex LWI, which is present in all devices—acoustical, where the transmitter is a phone ringer. Token presentation through acoustic interface along with general solution of token delivery via SIM Toolkit technology (see 3GPP TS, 1999) was presented by Khashchanskiy and Kustov (2001). However, mobile operators have not taken SIM Toolkit into any serious use, and the only alternative way of delivering sound tokens into the phone-ringing tone customization technology was not available for a broad range of devices at the time the aforementioned paper was published. Quite unexpectedly, recent development of mobile phone technologies gives a chance for sound tokens to become a better solution for the aforementioned problem, compared with other LWI. Namely, it can be stated that every contemporary mobile device supports either remote customization of ringing tones, or MMS, and in the majority of cases, even both, thus facilitating sound token receiving over the air. Most phone models can playback a received token with only a few button-clicks. Thus, a sound token-based solution meets the set criteria better than any other LWI. Token delivery works the same way for virtually all phones, and token presentation is simple. In this article we study the sound token solution practical implementation in detail. First, we select optimal modulation, encoding, and recognition algorithm, and we estimate data rate. Then we present results of experimental verification.


Sign in / Sign up

Export Citation Format

Share Document