scholarly journals Observer-Based Event-Triggered Circle Formation Control for First- and Second-Order Multiagent Systems

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Xu ◽  
Guangming Xie ◽  
Jin Tao ◽  
Minyi Xu ◽  
Quan Zhou

This paper proposes an observer-based event-triggered algorithm to solve circle formation control problems for both first- and second-order multiagent systems, where the communication topology is modeled by a spanning tree-based directed graph with limited resources. In particular, the observation-based event-triggering mechanism is used to reduce the update frequency of the controller, and the triggering time depends on the norm of the state function and the trigger threshold of measurement errors. The analysis shows that sufficient conditions are established for achieving the desired circle formation, while there exists at least one agent for which the next interevent interval is strictly positive. Numerical simulations of both first- and second-order multiagent systems are also given to demonstrate the effectiveness of the proposed control laws.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiayan Wen ◽  
Haijiang Zhang ◽  
Guangxing Tan ◽  
Ning Cai ◽  
Guangming Xie

This article focuses on circle formation control problem of multiagent systems based on event-triggered strategy under limited communication bandwidth. In such system, each agent can only perceive the angular distance of its nearest neighbor in the counterclockwise direction, and the angular distance of the nearest neighbor in the clockwise direction needs to be obtained by communicating with each other. In order to address the aforementioned problem, a novel distributed algorithm based on the combination of nonuniform quantitative communication technology and event-triggered control is proposed. Sufficient conditions on circle formation control are derived under which the states of all agents can be confirmed to converge to some desired equilibrium point. Different from the traditional uniform quantization communication framework, nonuniform quantization can be beneficial for handling small signals and improving the performance of multiagent systems concerned. Furthermore, under the proposed policy, all the designed quantizers do not emerge saturated. Numerical simulation results are provided to verify the effectiveness of the proposed algorithm.


Author(s):  
Huan Pan ◽  
Xiaohong Nian ◽  
Ling Guo

This paper mainly investigates consensus and formation control of second-order multiagent system with undirected communication graph. A nonlinear protocol is proposed as an extension of general linear protocols that have been widely studied. In order to achieve formation control, a formation control strategy corresponding to the nonlinear protocol is designed too. The sufficient conditions of consensus and formation are derived based on LaSalle's invariance principle. Simulation examples are provided to illustrate that the second-order multiagent with the nonlinear protocol can achieve consensus and formation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Chuan Yan ◽  
Mei Yu ◽  
Guangming Xie ◽  
Yu Liu

This paper mainly investigates the event-triggered control for discrete-time multiagent systems with the problem of packet losses and communication delays when both the first-order and the second-order neighbors’ information are used. Event-triggered control laws are adopted so as to reduce the frequency of individual actuation updating under the sampled-data framework for discrete-time agent dynamics. The communication graph is undirected and the loss of data across each communication link occurs at certain probability, which is governed by a Bernoulli process. It is found that the distributed consensus speeds up by using the second-order neighbors’ information when packet losses and communication delays occur. Numerical examples are given to demonstrate the effectiveness of the proposed methods.


2018 ◽  
Vol 275 ◽  
pp. 462-469 ◽  
Author(s):  
Mei Yu ◽  
Hangfei Wang ◽  
Guangming Xie ◽  
Kaiqi Jin

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangping Hu ◽  
Yulong Zhou ◽  
Yunsong Lin

Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are, respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured. Finally, some numerical examples are presented to validate the proposed event-driven consensus control.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoyu Wang ◽  
Kaien Liu ◽  
Zhijian Ji ◽  
Shitao Han

In this paper, the bipartite consensus problem of heterogeneous multiagent systems composed of first-order and second-order agents is considered by utilizing the event-triggered control scheme. Under structurally balanced directed topology, event-triggered bipartite consensus protocol is put forward, and event-triggering functions consisting of measurement error and threshold are designed. To exclude Zeno behavior, an exponential function is introduced in the threshold. The bipartite consensus problem is transformed into the corresponding stability problem by means of gauge transformation and model transformation. By virtue of Lyapunov method, sufficient conditions for systems without input delay are obtained to guarantee bipartite consensus. Furthermore, for the case with input delay, sufficient conditions which include an admissible upper bound of the delay are obtained to guarantee bipartite consensus. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Guoguang Wen ◽  
Yongguang Yu ◽  
Zhaoxia Peng ◽  
Ahmed Rahmani

This paper mainly addresses the distributed consensus tracking problem for second-order nonlinear multiagent systems with a specified reference trajectory. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position and velocity information of its neighbors. The consensus reference is taken as a virtual leader, whose output is only its position and velocity information that is available to only a subset of a group of followers. To achieve consensus tracking, a class of nonsmooth control protocols is proposed which reply on the relative information among the neighboring agents. Then some corresponding sufficient conditions are derived. It is shown that if the communication graph associated with the virtual leader and followers is connected at each time instant, the consensus can be achieved at least globally exponentially with the proposed protocol. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Finally, numerical examples are presented to illustrate the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document