scholarly journals Melatonin Attenuates Calcium Deposition from Vascular Smooth Muscle Cells by Activating Mitochondrial Fusion and Mitophagy via an AMPK/OPA1 Signaling Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Wei Ren Chen ◽  
Yu Jie Zhou ◽  
Jia Qi Yang ◽  
Fang Liu ◽  
Xue Ping Wu ◽  
...  

Mitochondrial fusion/mitophagy plays a role in cardiovascular calcification. Melatonin has been shown to protect against cardiovascular disease. This study sought to explore whether melatonin attenuates vascular calcification by regulating mitochondrial fusion/mitophagy via the AMP-activated protein kinase/optic atrophy 1 (AMPK/OPA1) signaling pathway. The effects of melatonin on vascular calcification were investigated in vascular smooth muscle cells (VSMCs). Calcium deposits were visualized by Alizarin Red S staining, while calcium content and alkaline phosphatase (ALP) activity were used to evaluate osteogenic differentiation. Western blots were used to measure expression of runt-related transcription factor 2 (Runx2), mitofusin 2 (Mfn2), mito-light chain 3 (mito-LC3) II, and cleaved caspase 3. Melatonin markedly reduced calcium deposition and ALP activity. Runx2 and cleaved caspase 3 were downregulated in response to melatonin, whereas Mfn2 and mito-LC3II were enhanced and accompanied by decreased mitochondrial superoxide levels. Melatonin also maintained mitochondrial function and promoted mitochondrial fusion/mitophagy via the OPA1 pathway. However, OPA1 deletion abolished the protective effects of melatonin on VSMC calcification. Melatonin treatment significantly increased p-AMPK and OPA1 protein expression, whereas treatment with compound C ablated the observed benefits of melatonin treatment. Collectively, our results demonstrate that melatonin protects VSMCs against calcification by promoting mitochondrial fusion/mitophagy via the AMPK/OPA1 pathway.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Ren Chen ◽  
Yu Jie Zhou ◽  
Jia Qi Yang ◽  
Fang Liu ◽  
Ying Xin Zhao ◽  
...  

Background. Melatonin has been demonstrated to protect against calcification in cyclosporine nephrotoxicity. The wingless-type MMTV integration site family member 1 (Wnt1)/β-catenin pathway is associated with cardiovascular calcification. This study aimed to explore whether melatonin could attenuate VSMC calcification through regulating the Wnt1/β-catenin signaling pathway. Methods. The effects of melatonin on vascular calcification were investigated in vascular smooth muscle cells (VSMCs). Calcium deposits were visualized by Alizarin Red Staining. Calcium content and alkaline phosphatase (ALP) activity were used to evaluate osteogenic differentiation. Western blots were used to measure the expression of runt-related transcription factor 2 (Runx2), α-smooth muscle actin (α-SMA), and cleaved caspase-3. Results. Melatonin markedly ameliorated calcium deposition and ALP activity. Runx2 and cleaved caspase-3 were found to be reduced and α-SMA was found to be increased by melatonin, together with a decrease in apoptosis. Immunofluorescence assay revealed a lower Runx2 protein level in the melatonin group. Melatonin treatment significantly decreased the expression of Wnt1 and β-catenin. Treatment with lithium chloride or transglutaminase 2 abrogated the protective effects of melatonin. Conclusion. Melatonin can attenuate β-GP-induced VSMC calcification through the suppression of Wnt1/β-catenin system.


2020 ◽  
Vol 45 (2) ◽  
pp. 314-330 ◽  
Author(s):  
Linzi Han ◽  
Yuying Zhang ◽  
Mingming Zhang ◽  
Liyu Guo ◽  
Jun Wang ◽  
...  

Introduction: Interleukin (IL)-1β, as a key biomarker and mediator of vascular calcification in patients with end-stage renal disease (ESRD), may be involved in the process of premature senescence of vascular smooth muscle cells (VSMCs). This work sought to investigate whether IL-1β-induced premature senescence contributes to the process of osteoblastic transition and vascular calcification in VSMCs. Methods: Eighty-eight patients with ESRD (aged 25–81 years), 11 healthy individuals, and 15 cases of lesion-free distal radial arteries from dialysis ESRD patients with angiostomy were collected in this study. Immunohistochemical analysis was performed to detect expression of IL-1β, p21, and bone morphogenetic protein-2 (BMP2) in the distal radial arteries. Primary human VSMCs from healthy neonatal umbilical cords were incubated with test agents for 1–3 days. Intracellular levels of reactive oxygen species (ROS) and senescence-associated-β-galactosidase (SA-β-gal) staining were used to detect senescent cells. Alizarin red staining and the calcium content of the cell layer were used to detect mineral deposition in VSMCs. Results: Coincident with positive staining of IL-1β, p21, and BMP2 in the lesion-free distal radial arteries, 66.67% patients showed mineral deposition. Serum IL-1β was 0.24 ± 0.57, 1.20 ± 2.95, and 9.41 ± 40.52 pg/mL in 11 healthy individuals, 20 patients without calcification, and 53 patients with calcification, respectively. Analysis of the cross-table chi-square test showed cardiovascular calcification is not correlated with levels of serum IL-1β in patients with ESRD (p = 0.533). In response to IL-1β, VSMCs showed a senescence-like phenotype, such as flat and enlarged morphology, increased expression of p21, an increased activity of SA-β-gal, and increased levels of ROS. IL-1β-induced senescence of VSMCs was required for the activation of IL-1β/NF-κB/p53/p21 signaling pathway. IL-1β-induced senescent VSMCs underwent calcification due to osteoblastic transition mainly depending upon the upregulation of BMP2. Resveratrol, an activator of sirtuin-1, postponed the IL-1β-induced senescence through blocking the NF-κB/p53/p21 pathway and attenuated the osteoblastic transition and calcification in VSMCs. Conclusions: High levels of IL-1β in medial smooth muscles of arteries may play roles in inducing senescence-associated calcification. IL-1β-induced senescence depending on the activation of the NF-κB/p53/p21 signaling pathway and contributing to osteoblastic transition of VSMCs.


Author(s):  
Ya Ling Bai ◽  
Mei Juan Cheng ◽  
Jing Jing Jin ◽  
Hui Ran Zhang ◽  
Lei He ◽  
...  

Previous studies have showed that the apoptosis of vascular smooth muscle cells (VSMCs) underlies the mechanism of pathological calcifications in patients with chronic kidney disease (CKD). SET domain-containing protein 8 (SET8), as an efficient protein has been reported to modulate cell apoptosis in hepatocellular carcinoma cell, esophageal squamous cell and neuronal cell through regulating pathological processes, such as cell-cycle progression and transcription regulation. However, whether SET8 is involved in high phosphorus induced vascular calcification by mediating apoptosis remains undefined. Here, we reported that SET8 was located both in nucleus and cytoplasm, and significantly downregulated in calcification models. SET8 deficiency promoted the apoptosis of VSMCs, which was indicated by the increased Bax/Bcl-2 and cleaved caspase-3/total caspase-3 ratios. Mechanistically, PI3K/Akt pathway was mediated by SET8 and inhibition of PI3K/Akt signaling pathway by giving LY294002 or transfecting Akt phosphorylation inactivated mutation plasmid increased apoptosis and calcification. Akt phosphorylation constitutively activated mutation could reduce apoptosis and calcification of VSMCs. Furthermore, exogenous overexpression of SET8 could reverse the effect of PI3K/Akt inhibition on the apoptosis and calcification of VSMCs. In summary, our researches suggested that SET8 overexpression ameliorated high phosphorus induced calcification of vascular smooth muscle cells via activating PI3K/Akt mediated anti-apoptotic effects.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Ana Amaya Garrido ◽  
José M Valdivielso ◽  
Stanislas Faguer ◽  
Arnaud Del Bello ◽  
Benedicte Buffin-Meyer ◽  
...  

Abstract Background and Aims Vascular calcification, leading to aortic stiffening and heart failure, is decisive risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). Promoted by bone mineral disorder and systemic inflammation in CKD patients, vascular calcification is a complex mechanism involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. Despite intensive research efforts in recent years, available treatments have limited effect and none of them prevent or reverse vascular calcification. The aim of this study was to analyse the serum proteome of CKD stage 3-4 patients in order to unravel new molecular changes associated to CV morbid-mortality and to decipher the role of novel candidates on vascular calcification to provide potential new therapeutic agents. Method In this study we used serum samples from two independent cohorts: 112 CKD stage 3-4 patients with a 4 years follow-up for CV events and 222 CKD stage 5 patients exhibiting a broad range of calcification degree determined by histological quantification in the epigastric and/or iliac artery. Serum proteome analysis was performed using tandem mass-spectrometry in a subcohort of 66 CKD3-4 patients and validation of protein candidates was performed using ELISA in the two full cohorts. Human primary vascular smooth muscle cells and mouse aortic rings were used for calcification assays. Calcium content was quantified using QuantiChrom calcium assay kit and calcium deposition was visualized by Alizarin Red and Von Kossa staining. Results Among 443 proteins detected in the serum of CKD3-4 patients, 134 displayed significant modified abundance in patients with CV events (n=32) compared to patients without (n=34). One of the most prominent changes was increased level of calprotectin (up to 8.6 fold, P<.0001). Using ELISA, we validated that higher serum calprotectin levels were strongly associated with higher probability of developing CV complications and increased mortality in CKD stage 3-4 patients (Figure A). Moreover, we showed that higher serum calprotectin was associated with increased vascular calcification levels in CKD stage 5 patients (Figure B). In vitro, calprotectin promoted calcification of human VSMCs (p<0.0001) (Figures C-D) and in mouse aortic rings (p<0.0001) (Figure E-F). Interestingly, these effects were significantly attenuated by paquinimod, a calprotectin inhibitor (Figures C-F). Conclusion Circulating calprotectin is a novel predictor of CV outcome and mortality in CKD patients. Calprotectin also shows calcification-inducing properties and its blockade by paquinimod alleviates its effects. Future experiments will consist in deciphering the signalling pathways involved in the regulation of calcification by calprotectin and evaluating in vivo the therapeutic potential of paquinimod on the development of medial vascular calcification lesions associated with CKD.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Nakwon CHOE ◽  
Duk-hwa Kwon ◽  
Juhee Ryu ◽  
SERA SHIN ◽  
Hosouk Joung ◽  
...  

Vascular calcification, the ectopic deposition of calcium in blood vessels, develops in association with various metabolic diseases and atherosclerosis and is an independent predictor for morbidity and mortality of these diseases. Here we report that reduction of microRNA-A-3p (miR-A-3p) causes an increase in ATF3, activating transcription factor 3, a novel osteogenic transcription factor, in vascular smooth muscle cells. Both miRNA and mRNA microarrays were performed with rat vascular smooth muscle cells and reciprocally regulated pairs of miRNA and mRNA were selected after bioinformatic analysis. Inorganic phosphate significantly reduced the expression of miR-A-3p in A10 cells. The transcript level was also reduced in vitamin D3-administered mouse aortas. miR-A-3p mimic reduced calcium deposition, whereas miR-A-3p inhibitor increased it. The Atf3 mRNA level was upregulated in cellular vascular calcification model, and miR-A-3p reduced the Atf3 mRNA and protein levels. Transfection with Atf3 could recover the miR-A-3p-induced reduction of calcium deposition. Our results suggest that reduction of miR-A-3p may contribute to the development of vascular calcification by de-repression of ATF3


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2694
Author(s):  
Hyun-Joo Park ◽  
Yeon Kim ◽  
Mi-Kyoung Kim ◽  
Hae-Ryoun Park ◽  
Hyung-Joon Kim ◽  
...  

Accumulating evidence suggests a link between periodontal disease and cardiovascular diseases. Vascular calcification is the pathological precipitation of phosphate and calcium in the vasculature and is closely associated with increased cardiovascular risk and mortality. In this study, we have demonstrated that the infection with Porphyromonas gingivalis (P. gingivalis), one of the major periodontal pathogens, increases inorganic phosphate-induced vascular calcification through the phenotype transition, apoptosis, and matrix vesicle release of vascular smooth muscle cells. Moreover, P. gingivalis infection accelerated the phosphate-induced calcium deposition in cultured rat aorta ex vivo. Taken together, our findings indicate that P. gingivalis contributes to the periodontal infection-related vascular diseases associated with vascular calcification.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Haile Mehansho ◽  
Satya Majeti ◽  
Gabe Tzeghai

Arterial vascular calcification (VC) represents formation of calcium phosphate deposits on the interior of arteries, which could restrict blood flow leading to heart health problems, including morbidity and mortality. VC is a complex and tightly regulated process that involves transformation of vascular smooth muscle cells (VSMCs) to bone-like cells and subsequent deposition of calcium as hydroxyapatite. Natural bioactives, including quercetin (Q), curcumin (C), resveratrol (R), and magnesium (Mg), have been reported to inhibit VC. Thus, we conducted an in vitro study using rat vascular smooth muscle cells (rVSMCs) to evaluate the protective effect of natural bioactives found in OptiCel, that is, Mg combined with polyphenols (PPs), Q, C, and R. Calcification was induced by culturing rVSMCs in a high phosphate (HP) medium. The addition of Mg and Q + C + R separately decreased the HP-induced calcium deposition by 37.55% and 42.78%, respectively. In contrast, when Mg was combined with Q, C, and R, the inhibition of calcium deposition was decreased by 92.88%, which is greater than their calculated additive inhibition (80.33%). These results demonstrate that the combination of Mg with selected PPs (Q, C, and R) is more effective than when used separately. The findings also suggest the combination has a synergistic effect in inhibiting VC, which is a risk factor for cardiovascular disease. Thus, regular consumption of these natural bioactives could have a beneficial effect in reducing the development of heart diseases.


Sign in / Sign up

Export Citation Format

Share Document