scholarly journals Mechanisms of Floor Heave in Roadways Adjacent to a Goaf Caused by the Fracturing of a Competent Roof and Controlling Technology

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Shuaigang Liu ◽  
Jianbiao Bai ◽  
Xiangyu Wang ◽  
Bowen Wu ◽  
Wenda Wu

In traditional sequential single-wing mining practices, one-entry longwall mining systems make it challenging to efficiently and smoothly transfer mining equipment during a continuous mining sequence. In two-entry longwall systems, the headgate of the current panel and the tailgate of the next panel are excavated parallel to one another, effectively creating space for the transfer of mining equipment. The tailgate of the panel, however, is subjected to high-mining-induced stresses, causing severe floor heave, which seriously affects the efficiency of coal production. In this paper, field measurements and numerical simulation methods are used to reveal the mechanism of floor heave induced by the rupture and instability of a competent roof. The results show that the positional relationship between the adjacent tailgate and the longwall face is divided into three stages. Throughout the three stages, the area in which the coal pillar is not horizontally displaced moves from the center of the pillar to the goaf, and the area of peak vertical stress within the coal pillar shifts from the center of the pillar to the side nearest to the tailgate. Field studies suggest that the proposed technologies can effectively control floor heave in the tailgates of two-entry longwall mining systems.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Guorui Feng ◽  
Songyu Li ◽  
Pengfei Wang ◽  
Jun Guo ◽  
Ruipeng Qian ◽  
...  

This paper takes the double predriven recovery rooms (DPRR) of 31109 panel of a coal mine in Inner Mongolia as a case study. DPRRs are used to withdraw mining equipment, which play a significant role in safe and efficient production in the final longwall mining stage. Theoretical analysis and numerical simulation were carried out to study the reasonable size of the front abutment pillar between DPRR (inter-DPRR pillar) and the damage depth of the DPRR floor. The results show that (1) the stress distribution of the fender (the remnant longwall panel) can be approximately divided into three stages with the advance of the working face: stress redistribution (the first) stage, stress superimposed growth (the second) stage, and stress transfer (the third) stage. (2) According to stress distribution and the corresponding failure mode of the fender, the calculation model of the slippage damage of the DPRR floor is rectified, and the damage range of the floor is rezoned to make it more suitable for the damage depth of the room. (3) The zone of influence of the front abutment pressure is 40–50 m, and the stress around the DPRR increases significantly in the final mining stage. When the size of the inter-DPRR pillar is greater than 15 m, the effect of increasing the coal pillar size on lowering the peak stress of the main predriven recovery room is limited. (4) Floor heave tends to increase at first and then decrease with depth and reaches the maximum in the depth of 5 m in the final mining stage, indicating that 5 m is the starting point for the initial depth of the floor heave. (5) The theoretical calculation shows that the reasonable size of the inter-DPRR pillar is 20 m, and the critical width of the fender is 18.48 m, which can guide the secondary support to prevent dynamic disasters. Floor grouting and constructing concrete floor are effective and economic ways to control the floor heave.


2019 ◽  
Vol 16 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Weibing Zhu ◽  
Xiangrui Qi ◽  
Jinfeng Ju ◽  
Jingmin Xu

Abstract Safe and efficient mining of shallow coal seams relies on the understanding and effective control of strata behaviour. Field measurements, theoretical analysis and numerical simulations are presented in this study to investigate the mechanism behind abnormal strata behaviour, such as roof collapse and severe roadway deformation, that occurs in high longwall face-ends under shallow cover. We observed that coal pillars with two sides being mined out become unstable when the cover depth exceeds a certain value. The instability of the coal pillar can alter the fracture line of the overlying strata, triggering a reversed rotation of the ‘curved triangle blocks’ that form after the breakage of the overlying main roof. The revolving blocks apply stress on the roof strata directly above the longwall face-end, resulting in roof collapse. The collapse of both the coal pillars and the roof also leads to the advancement and increase of the overlying abutment pressure, which further causes severe roadway deformation in front of the working face. The strong strata behaviour that occurs in high longwall face-ends with shallow cover is presented in this study and countermeasures are proposed, such as widening or strengthening the coal pillar, or implementing destress blasting. The countermeasures we proposed and the results of our analyses may facilitate the safe mining of shallow coal seams with similar problems in the future, and may improve the safety and efficient working of coal mines.


Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


2013 ◽  
Vol 13 (05) ◽  
pp. 1340007 ◽  
Author(s):  
FUYIN MA ◽  
JIU HUI WU ◽  
HAIYUN HOU

Physiological acoustics is a very hot topic in modern acoustic research, which is to study the hearing mechanism and the utterance of both humans and animals. It could be divided into two main aspects: physical acoustics of the ear and physiological acoustics. In physiological acoustics, there are some common research methods, such as objective experimental testing, subjective feelings evaluation survey statistical method, building the physical acoustic model and numerical simulation methods, etc. The authors are researching the accurate mathematical model of equal loudness curves, critical band and masking effects, by applying the holographic concept with several biological factors which are required to build a standard model. The cochlear emission information should be extracted from wavelet analysis method and two hearing protection technologies are being developed by band shielding.


2014 ◽  
Vol 16 (2) ◽  
pp. 382-402
Author(s):  
Feng Bao ◽  
Yanzhao Cao ◽  
Xiaoying Han

AbstractNonlinear filter problems arise in many applications such as communications and signal processing. Commonly used numerical simulation methods include Kalman filter method, particle filter method, etc. In this paper a novel numerical algorithm is constructed based on samples of the current state obtained by solving the state equation implicitly. Numerical experiments demonstrate that our algorithm is more accurate than the Kalman filter and more stable than the particle filter.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shengrong Xie ◽  
Xiaoyu Wu ◽  
Dongdong Chen ◽  
Yaohui Sun ◽  
Junchao Zeng ◽  
...  

Automatic roadways on gob-side entry retaining with no-pillars are used for longwall mining technology. The mining technology with no-pillars can recover coal pillar resources and reduce the amount and cost of roadway excavations. Automatic roadway technology for cutting roofs by combined support on gob-side entry retaining with no-pillars is adopted for the condition of thick immediate roof and medium-thick coal seam mining, cutting off the immediate roof and the main roof on the gob by combined support. The fractured roof forms gangue blocks to fill the gob and loads the overlying strata. The gangue control system is placed on the roadside, which controls the caving gangue to form a gangue rib. In this paper, the viewpoints and key technologies (the roof-cutting technology, the reinforcement and support technology, the gangue rib control technology, and the auxiliary support technology) of automatic roadway technology for cutting roofs by combined support on the gob-side entry retaining with no-pillars are introduced. Furthermore, the formation and control process are explained. The numerical simulation is used to simulate and analyze the roof hanging and the roof cutting structures. In addition, a field engineering test is performed. The field test shows that automatic roadway technology for cutting roofs by combined support on gob-side entry retaining with no-pillars is feasible. This process uses construction techniques and technologies to meet on-site production needs. The combined support has high resistance strength and is shrinkable. In engineering applications, the combined support has a low damage rate. The deformation of the automatic roadway with gob-side entry retaining is small, and the control effect is significant.


Sign in / Sign up

Export Citation Format

Share Document