scholarly journals Secure Communication Scheme Based on a New 5D Multistable Four-Wing Memristive Hyperchaotic System with Disturbance Inputs

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Fei Yu ◽  
Zinan Zhang ◽  
Li Liu ◽  
Hui Shen ◽  
Yuanyuan Huang ◽  
...  

By introducing a flux-controlled memristor model with absolute value function, a 5D multistable four-wing memristive hyperchaotic system (FWMHS) with linear equilibrium points is proposed in this paper. The dynamic characteristics of the system are studied in terms of equilibrium point, perpetual point, bifurcation diagram, Lyapunov exponential spectrum, phase portraits, and spectral entropy. This system is of the group of systems that have coexisting attractors. In addition, the circuit implementation scheme is also proposed. Then, a secure communication scheme based on the proposed 5D multistable FWMHS with disturbance inputs is designed. Based on parametric modulation theory and Lyapunov stability theory, synchronization and secure communication between the transmitter and receiver are realized and two message signals are recovered by a convenient robust high-order sliding mode adaptive controller. Through the proposed adaptive controller, the unknown parameters can be identified accurately, the gain of the receiver system can be adjusted continuously, and the disturbance inputs of the transmitter and receiver can be suppressed effectively. Thereafter, the convergence of the proposed scheme is proven by means of an appropriate Lyapunov functional and the effectiveness of the theoretical results is testified via numerical simulations.

2013 ◽  
Vol 27 (32) ◽  
pp. 1350197
Author(s):  
XING-YUAN WANG ◽  
SI-HUI JIANG ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve adaptive synchronization between a novel hyperchaotic system and the hyperchaotic Chen system with fully unknown parameters. Based on the Lyapunov stability theory, an adaptive controller and parameter updating law are presented to synchronize the above two hyperchaotic systems. The corresponding theoretical proof is given and numerical simulations are presented to verify the effectiveness of the proposed scheme.


2019 ◽  
Vol 33 (24) ◽  
pp. 1950290 ◽  
Author(s):  
Ye Li ◽  
Haoping Wang ◽  
Yang Tian

A novel fractional-order adaptive non-singular terminal sliding mode control (FONTSMC) method is investigated for the synchronization of two nonlinear fractional-order chaotic systems in the presence of external disturbance. The proposed controller consists of a fractional-order non-singular terminal sliding mode surface and an adaptive gain adjusted with sliding surface. Based on Lyapunov stability theory and stability theorem for fractional-order dynamic systems, the controlled system’s stable synchronization is guaranteed. A dual-channel secure communication system is presented to transmit useful signals based on the proposed synchronization controller. Finally, numerical simulations and comparison with fractional-order PID controller, fractional-order PD sliding mode controller and adaptive terminal sliding mode controller are given to demonstrate the effectiveness and the robustness of the proposed FONTSMC control. The application of the proposed synchronization method is studied in the dual-channel secure communication.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Laarem Guessas ◽  
Sundarapandian Vaidyanathan ◽  
Anitha Karthikeyan ◽  
Ashokkumar Srinivasan

We announce a new 4D hyperchaotic system with four parameters. The dynamic properties of the proposed hyperchaotic system are studied in detail; the Lyapunov exponents, Kaplan-Yorke dimension, bifurcation, and bicoherence contours of the novel hyperchaotic system are derived. Furthermore, control algorithms are designed for the complete synchronization of the identical hyperchaotic systems with unknown parameters using sliding mode controllers and genetically optimized PID controllers. The stabilities of the controllers and parameter update laws are proved using Lyapunov stability theory. Use of the optimized PID controllers ensures less time of convergence and fast synchronization speed. Finally the proposed novel hyperchaotic system is realized in FPGA.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110033
Author(s):  
Javad Mostafaee ◽  
Saleh Mobayen ◽  
Behrouz Vaseghi ◽  
Mohammad Vahedi ◽  
Afef Fekih

This paper proposes a novel exponential hyper–chaotic system with complex dynamic behaviors. It also analyzes the chaotic attractor, bifurcation diagram, equilibrium points, Poincare map, Kaplan–Yorke dimension, and Lyapunov exponent behaviors. A fast terminal sliding mode control scheme is then designed to ensure the fast synchronization and stability of the new exponential hyper–chaotic system. Stability analysis was performed using the Lyapunov stability theory. One of the main features of the proposed controller is the finite time stability of the terminal sliding surface designed with high–order power function of error and derivative of error. The approach was implemented for image cryptosystem. Color image encryption was carried out to confirm the performance of the new hyper–chaotic system. For image encryption, the DNA encryption-based RGB algorithm was used. Performance assessment of the proposed approach confirmed the ability of the proposed hyper–chaotic system to increase the security of image encryption.


2013 ◽  
Vol 401-403 ◽  
pp. 1657-1660
Author(s):  
Bin Zhou ◽  
Xiang Wang ◽  
Yu Gao ◽  
Shao Cheng Qu

An adaptive controller with adaptive rate is presented to synchronize two chaos systems and to apply to secure communication. Based on Lyapunov stability theory, a sufficient condition and adaptive control parameters are obtained. Finally, the simulation with synchronization and secure communication is given to show the effectiveness of the proposed method. Keywords: adaptive; synchronization; observer; controller.


2008 ◽  
Vol 22 (24) ◽  
pp. 4175-4188 ◽  
Author(s):  
YANG TANG ◽  
JIAN-AN FANG ◽  
LIANG CHEN

In this paper, a simple and systematic adaptive feedback method for achieving lag projective stochastic perturbed synchronization of a new four-wing chaotic system with unknown parameters is presented. Moreover, a secure communication scheme based on the adaptive feedback lag projective synchronization of the new chaotic systems with stochastic perturbation and unknown parameters is presented. The simulation results show the feasibility of the proposed method.


2016 ◽  
Vol 26 (13) ◽  
pp. 1650222 ◽  
Author(s):  
A. M. A. El-Sayed ◽  
A. Elsonbaty ◽  
A. A. Elsadany ◽  
A. E. Matouk

This paper presents an analytical framework to investigate the dynamical behavior of a new fractional-order hyperchaotic circuit system. A sufficient condition for existence, uniqueness and continuous dependence on initial conditions of the solution of the proposed system is derived. The local stability of all the system’s equilibrium points are discussed using fractional Routh–Hurwitz test. Then the analytical conditions for the existence of a pitchfork bifurcation in this system with fractional-order parameter less than 1/3 are provided. Conditions for the existence of Hopf bifurcation in this system are also investigated. The dynamics of discretized form of our fractional-order hyperchaotic system are explored. Chaos control is also achieved in discretized system using delay feedback control technique. The numerical simulation are presented to confirm our theoretical analysis via phase portraits, bifurcation diagrams and Lyapunov exponents. A text encryption algorithm is presented based on the proposed fractional-order system. The results show that the new system exhibits a rich variety of dynamical behaviors such as limit cycles, chaos and transient phenomena where fractional-order derivative represents a key parameter in determining system qualitative behavior.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Sifeu Takougang Kingni ◽  
Gaetan Fautso Kuiate ◽  
Victor Kamdoum Tamba ◽  
Viet-Thanh Pham

A two-parameter autonomous jerk oscillator with a cosine hyperbolic nonlinearity is proposed in this paper. Firstly, the stability of equilibrium points of proposed autonomous jerk oscillator is investigated by analyzing the characteristic equation and the existence of Hopf bifurcation is verified using one of the two parameters as a bifurcation parameter. By tuning its two parameters, various dynamical behaviors are found in the proposed autonomous jerk oscillator including periodic attractor, one-scroll chaotic attractor, and coexistence between chaotic and periodic attractors. The proposed autonomous jerk oscillator has period-doubling route to chaos with the variation of one of its parameters and reverse period-doubling route to chaos with the variation of its other parameter. The proposed autonomous jerk oscillator is modelled on Field Programmable Gate Array (FPGA) and the FPGA chip statistics and phase portraits are derived. The chaotic and coexistence of attractors generated in the proposed autonomous jerk oscillator are confirmed by FPGA implementation of the proposed autonomous jerk oscillator. A good qualitative agreement is illustrated between the numerical and FPGA results. Finally synchronization of unidirectional coupled identical proposed autonomous jerk oscillators is achieved using adaptive sliding mode control method.


2020 ◽  
Vol 30 (10) ◽  
pp. 2050147 ◽  
Author(s):  
Fei Yu ◽  
Shuai Qian ◽  
Xi Chen ◽  
Yuanyuan Huang ◽  
Li Liu ◽  
...  

In this paper, a simple four-wing chaotic attractor is first proposed by replacing the constant parameters of the Chen system with a periodic piecewise function. Then, a new 4D four-wing memristive hyperchaotic system is presented by adding a flux-controlled memristor with linear memductance into the proposed four-wing Chen system. The memristor mathematical structure model is simple and easy to implement. Dynamical analysis and numerical simulation of the memristive hyperchaotic system are carried out. Then, the electronic circuit of the hyperchaotic system is designed and implemented. The results of numerical simulation are in good agreement with the electronic circuit experiment. In addition, shape synchronization control for the 4D four-wing memristive hyperchaotic system is realized, and a communication system is designed by using the shape synchronization method. Finally, secure signal masking application is implemented on Matlab platform. In the developed secure communication scheme, the information signal overlaps with the chaotic masking signal, which improves the security of the system.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Li Xiong ◽  
Zhenlai Liu ◽  
Xinguo Zhang

This paper is devoted to introduce a novel fourth-order hyperchaotic system. The hyperchaotic system is constructed by adding a linear feedback control level based on a modified Lorenz-like chaotic circuit with reduced number of amplifiers. The local dynamical entities, such as the basic dynamical behavior, the divergence, the eigenvalue, and the Lyapunov exponents of the new hyperchaotic system, are all investigated analytically and numerically. Then, an active control method is derived to achieve global chaotic synchronization of the novel hyperchaotic system through making the synchronization error system asymptotically stable at the origin based on Lyapunov stability theory. Next, the proposed novel hyperchaotic system is applied to construct another new hyperchaotic system with circuit deformation and design a new hyperchaotic secure communication circuit. Furthermore, the implementation of two novel electronic circuits of the proposed hyperchaotic systems is presented, examined, and realized using physical components. A good qualitative agreement is shown between the simulations and the experimental results around 500 kHz and below 1 MHz.


Sign in / Sign up

Export Citation Format

Share Document