scholarly journals The Inertial Integrated Navigation Algorithms in the Polar Region

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Li-Jun Song ◽  
Guang-Qiao Yang ◽  
Wang-Liang Zhao ◽  
You-Jun Ding ◽  
Feng Wu ◽  
...  

Because the accuracy of the existing airborne navigation is lacking in the polar region, it is difficult to ensure the safety and reliability of the aircraft when it is flying over the polar region. The integrated navigation system based on the inertial navigation technology uses multi-information fusion to assist collaborative navigation and obtain an indirect grid navigation algorithm that combines the azimuth navigation algorithm and the grid navigation algorithm to solve the existing problems. This paper analyzes the principle of the inertial navigation system in the polar region, the semiphysical simulation experiments are carried out by using the navigation theory and the background engineering, and the accuracies of the integrated navigation system of the indirect grid frame in the polar region and the integrated navigation system in the middle and low latitudes are consistent, which verifies the feasibility and effectiveness of the SINS/CNS/GPS integrated navigation system in the polar region. In addition, the paper provides the theoretical basis and the application of engineering to achieve the SINS/CNS/GPS integrated navigation system in the polar region.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Song Lijun ◽  
Zhao Wanliang ◽  
Cheng Yuxiang ◽  
Chen Xiaozhen

As the inertial navigation system cannot meet the precision requirements of global navigation in the special geographical environment of the Polar Regions, this paper presents Strapdown Inertial Navigation System (SINS)/Celestial Navigation System (CNS) integrated navigation system of airborne based on Grid Reference Frame (GRF) and the simulation is carried out. The result of simulation shows that the SINS/CNS integrated navigation system is superior to the single subsystem in precision and performance, which not only effectively inhibits the error caused by gyro drift but also corrects the navigation parameters of system without delay. Comparing the simulation in the middle and low latitudes and in the Polar Regions, the precision of SINS/CNS integrated navigation system is the same in the middle and low latitudes and in the Polar Regions.


2014 ◽  
Vol 711 ◽  
pp. 338-341 ◽  
Author(s):  
Qi Wang ◽  
Cheng Shan Qian ◽  
Zi Jia Zhang ◽  
Chang Song Yang

To improve the navigation precision and reliability of autonomous underwater vehicles, a terrain-aided strapdown inertial navigation based on Federated Filter (FF) is proposed in this paper. The characteristics of strapdown inertial navigation system and terrain-aided navigation system are described in this paper, and Federated Filtering method is applied to the information fusion. Simulation experiments of novel integrated navigation system proposed in the paper were carried out comparing to the traditional Kalman filtering methods. The experiment results suggest that the Federated Filtering method is able to improve the long-time navigation precision and reliability, relative to the traditional Kalman Filtering method.


2013 ◽  
Vol 278-280 ◽  
pp. 1719-1722 ◽  
Author(s):  
Xiao Yu Zhang ◽  
Chun Lei Song

A new scheme of small integrated navigation system based on micro inertial measurement unit (MIMU), global position system (GPS) is presented. The characteristic of these sensors and the structure of system are introduced respectively. The TI high performance floating point DSP TMS320C6713B is used as core processor, which is designed to realize both the data collecting and the navigation calculating. According to the error models of inertial navigation system, an integrated navigation algorithm used Kalman filter is proposed to fuse the information from all of the sensors. The simulation test results show the feasibility of the system design.


2015 ◽  
Vol 69 (3) ◽  
pp. 561-581 ◽  
Author(s):  
Mohammad Shabani ◽  
Asghar Gholami

In underwater navigation, the conventional Error State Kalman Filter (ESKF) is used for combining navigation data where due to first order linearization of the nonlinear equations of the dynamics and measurements, considerable error is induced in estimated error state and covariance matrices. This paper presents an underwater integrated inertial navigation system using the unscented filter as an improved nonlinear version of the Kalman filter family. The designed system consists of a strap-down inertial navigation system accompanying Doppler velocity log and depth meter. In the proposed approach, to use the nonlinear capabilities of the unscented filtering approach the integrated navigation system is implemented in a direct approach where the nonlinear total state dynamic and and measurement models are utilised without any linearization. To our knowledge, no results have been reported in the literature on the experimental evaluation of the unscented-based integrated navigation system for underwater vehicles. The performance of the designed system is studied using real measurements. The results of the lake test show that the proposed system estimates the vehicle's position more accurately compared with the conventional ESKF structure.


2014 ◽  
Vol 68 (2) ◽  
pp. 308-326 ◽  
Author(s):  
Wenjie Zhao ◽  
Zhou Fang ◽  
Ping Li

This paper reports on a new navigation algorithm for fixed-wing Unmanned Aerial Vehicles (UAVs) to bridge Global Position System (GPS) outages, based on a common navigation system configuration. The ground velocity is obtained from wind-compensated airspeed, and a centripetal force model is introduced to estimate the motion acceleration. Compensated by this acceleration, the gravity vector can be extracted from the accelerometer measurement. Finally, fusing the information of the ground velocity, magnetic heading, barometric height, and gravity vector, the Integrated Navigation System (INS) is reconstructed, and an Extended Kalman Filter (EKF) is used to estimate INS errors. Hardware-in-loop simulation results show that compared with INS-only solutions, the proposed method effectively resists long-term drift of INS errors and significantly improves the accuracy for dynamic navigation during GPS outages.


2021 ◽  
Author(s):  
kai chen ◽  
Sen-sen PEI ◽  
Cheng-zhi ZENG ◽  
Gang DING

Abstract A tightly-coupled integrated navigation system (TCINS) for hypersonic vehicles is proposed when the satellite signals are disturbed. Firstly, the architecture of the integrated navigation system for the hypersonic vehicle is introduced. This system applies fiber SINS, BeiDou satellite receiver (BDS) and SOPC missile-born computer. Subsequently, the SINS mechanization for hypersonic vehicle is presented. The J2 model is employed for the normal gravity of the near space. An algorithm for updating the attitude, velocity and position is designed. State equations and measurement equations of SINS/BDS tightly-coupled integrated navigation for hypersonic vehicle are given, and a scheme of validity for satellite data is designed. Finally, the SINS/BDS tightly-coupled vehicle field tests and hardware-in-the-loop (HWIL) simulation tests are carried out. The vehicle field test and HWIL simulation results show that the heading angle error of tightly-coupled integrated navigation is within 0.2°, the pitch and roll angle errors are within 0.05°, the maximum velocity error is 0.3m/s, and the maximum position error is 10m.


2012 ◽  
Vol 442 ◽  
pp. 441-445
Author(s):  
Yong Sen Wei

A GPS/inertial navigation system design scheme is introduced. Combination of DSP and FPGA is used on the navigation board, and micro inertial navigation measuring element --ADIS16405 is used to sample required navigation data. DSP mainly implements navigation calculating based on navigation data, and realizes different navigation algorithms; FPGA in the system plays centeral control role, and not only samples IMU and GPS data, but also synchronize IMU and GPS in the real time, and preprocess and packet the navigation data. This paper also introduces the design of the software on FPGA. Practice proves that the scheme is feasible, and achieves the good balance between the cost, reliability and efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ling Huang ◽  
Xiang Xu ◽  
Heming Zhao ◽  
Haoran Ge

Due to the principle error caused by the Earth’s sphere model in transverse polar navigation, the ellipsoid model is usually used for transverse transformation. In order to avoid the complex transverse transformation of the ellipsoid model, a virtual sphere model, which can simplify the transformation of the ellipsoid model, is constructed in this paper. With the requirements of high accuracy and long-time navigation for AUV in the polar region, the integrated navigation scheme of SINS/DVL, which is based on the virtual sphere model, is proposed. The proposed method can improve the navigation accuracy and suppress the oscillation error. The error equations of transverse SINS are established based on the virtual sphere model. Then, the transverse SINS/DVL integrated navigation algorithm is derived according to the new error equations. The simulation results show that the navigation accuracy of the proposed method is equivalent with the traditional ellipsoid model method and is better than that of the traditional sphere model method. However, the complexity of the proposed method is simpler than the traditional ellipsoid model method. Moreover, it is verified that the navigation accuracy of SINS/DVL integrated navigation system based on the virtual sphere model meets the requirements of AUV.


2011 ◽  
Vol 317-319 ◽  
pp. 1512-1517
Author(s):  
Ming Wei Liu ◽  
Fen Fen Xiong ◽  
Jin Huang

A fuzzy adaptive Kalman filtering navigation algorithm is proposed and further applied to the GPS/INS integrated navigation system in this paper. The common Sage-Husa adaptive filtering algorithm and its drawbacks are elaborated. In order to adjust the Sage-Husa adaptive filter to the optimal state to improve the accuracy of the integrated navigation system, the fuzzy logic adaptive controller is used to adjust the weighting form for the covariance matrix of measurement noise to gradually make it approach to the true noise levels. Simulation results show that the proposed algorithm can not only inhibit the filtering divergence but also improve filtering accuracy.


Sign in / Sign up

Export Citation Format

Share Document