scholarly journals Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
RuoXi Qin ◽  
Zhenzhen Wang ◽  
LingYun Jiang ◽  
Kai Qiao ◽  
Jinjin Hai ◽  
...  

Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid screening of potential patients with lung cancer. Deep learning methods have already been applied for the automatic diagnosis of lung cancer in the past. Due to restrictions caused by single modality images of dataset as well as the lack of approaches that allow for a reliable extraction of fine-grained features from different imaging modalities, research regarding the automated diagnosis of lung cancer based on noninvasive clinical images requires further study. In this paper, we present a deep learning architecture that combines the fine-grained feature from PET and CT images that allow for the noninvasive diagnosis of lung cancer. The multidimensional (regarding the channel as well as spatial dimensions) attention mechanism is used to effectively reduce feature noise when extracting fine-grained features from each imaging modality. We conduct a comparative analysis of the two aspects of feature fusion and attention mechanism through quantitative evaluation metrics and the visualization of deep learning process. In our experiments, we obtained an area under the ROC curve of 0.92 (balanced accuracy = 0.72) and a more focused network attention which shows the effective extraction of the fine-grained feature from each imaging modality.

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Wenfa Jiang ◽  
Ganhua Zeng ◽  
Shuo Wang ◽  
Xiaofeng Wu ◽  
Chenyang Xu

Lung cancer is one of the malignant tumors with the highest fatality rate and nearest to our lives. It poses a great threat to human health and it mainly occurs in smokers. In our country, with the acceleration of industrialization, environmental pollution, and population aging, the cancer burden of lung cancer is increasing day by day. In the diagnosis of lung cancer, Computed Tomography (CT) images are a fairly common visualization tool. CT images visualize all tissues based on the absorption of X-rays. The diseased parts of the lung are collectively referred to as pulmonary nodules, the shape of nodules is different, and the risk of cancer will vary with the shape of nodules. Computer-aided diagnosis (CAD) is a very suitable method to solve this problem because the computer vision model can quickly scan every part of the CT image of the same quality for analysis and will not be affected by fatigue and emotion. The latest advances in deep learning enable computer vision models to help doctors diagnose various diseases, and in some cases, models have shown greater competitiveness than doctors. Based on the opportunity of technological development, the application of computer vision in medical imaging diagnosis of diseases has important research significance and value. In this paper, we have used a deep learning-based model on CT images of lung cancer and verified its effectiveness in the timely and accurate prediction of lungs disease. The proposed model has three parts: (i) detection of lung nodules, (ii) False Positive Reduction of the detected nodules to filter out “false nodules,” and (iii) classification of benign and malignant lung nodules. Furthermore, different network structures and loss functions were designed and realized at different stages. Additionally, to fine-tune the proposed deep learning-based mode and improve its accuracy in the detection Lung Nodule Detection, Noudule-Net, which is a detection network structure that combines U-Net and RPN, is proposed. Experimental observations have verified that the proposed scheme has exceptionally improved the expected accuracy and precision ratio of the underlined disease.


Lung cancer is a serious illness which leads to increased mortality rate globally. The identification of lung cancer at the beginning stage is the probable method of improving the survival rate of the patients. Generally, Computed Tomography (CT) scan is applied for finding the location of the tumor and determines the stage of cancer. Existing works has presented an effective diagnosis classification model for CT lung images. This paper designs an effective diagnosis and classification model for CT lung images. The presented model involves different stages namely pre-processing, segmentation, feature extraction and classification. The initial stage includes an adaptive histogram based equalization (AHE) model for image enhancement and bilateral filtering (BF) model for noise removal. The pre-processed images are fed into the second stage of watershed segmentation model for effectively segment the images. Then, a deep learning based Xception model is applied for prominent feature extraction and the classification takes place by the use of logistic regression (LR) classifier. A comprehensive simulation is carried out to ensure the effective classification of the lung CT images using a benchmark dataset. The outcome implied the outstanding performance of the presented model on the applied test images.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jinglun Liang ◽  
Guoliang Ye ◽  
Jianwen Guo ◽  
Qifan Huang ◽  
Shaohui Zhang

Malignant pulmonary nodules are one of the main manifestations of lung cancer in early CT image screening. Since lung cancer may have no early obvious symptoms, it is important to develop a computer-aided detection (CAD) system to assist doctors to detect the malignant pulmonary nodules in the early stage of lung cancer CT diagnosis. Due to the recent successful applications of deep learning in image processing, more and more researchers have been trying to apply it to the diagnosis of pulmonary nodules. However, due to the ratio of nodules and non-nodules samples used in the training and testing datasets usually being different from the practical ratio of lung cancer, the CAD classification systems may easily produce higher false-positives while using this imbalanced dataset. This work introduces a filtering step to remove the irrelevant images from the dataset, and the results show that the false-positives can be reduced and the accuracy can be above 98%. There are two steps in nodule detection. Firstly, the images with pulmonary nodules are screened from the whole lung CT images of the patients. Secondly, the exact locations of pulmonary nodules will be detected using Faster R-CNN. Final results show that this method can effectively detect the pulmonary nodules in the CT images and hence potentially assist doctors in the early diagnosis of lung cancer.


2009 ◽  
Vol 42 (6) ◽  
pp. 1041-1051 ◽  
Author(s):  
A. El-Baz ◽  
G. Gimel’farb ◽  
R. Falk ◽  
M. Abo El-Ghar

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 9037-9037
Author(s):  
Tao Xu ◽  
Chuoji Huang ◽  
Yaoqi Liu ◽  
Jing Gao ◽  
Huan Chang ◽  
...  

9037 Background: Lung cancer is the most common cancer worldwide. Artificial intelligence (AI) platform using deep learning algorithms have made a remarkable progress in improving diagnostic accuracy of lung cancer. But AI diagnostic performance in identifying benign and malignant pulmonary nodules still needs improvement. We aimed to validate a Pulmonary Nodules Artificial Intelligence Diagnostic System (PNAIDS) by analyzing computed tomography (CT) imaging data. Methods: This real-world, multicentre, diagnostic study was done in five different tier hospitals in China. The CT images of patients, who were aged over 18 years and never had previous anti-cancer treatments, were retrieved from participating hospitals. 534 eligible patients with 5-30mm diameter pulmonary nodules identified by CT were planning to confirm with histopathological diagnosis. The performance of PNAIDS was also compared with respiratory specialists and radiologists with expert or competent degrees of expertise as well as Mayo Clinic’s model by area under the curve (AUC) and evaluated differences by calculating the 95% CIs using the Z-test method. 11 selected participants were tested circulating genetically abnormal cells (CACs) before surgery with doctors suggested. Results: 611 lung CT images from 534 individuals were used to test PNAIDS. The diagnostic accuracy, valued by AUC, in identifying benign and malignant pulmonary nodules was 0.765 (95%CI [0.729 - 0.798]). The diagnostic sensitivity of PNAIDS is 0.630(0.579 – 0.679), specificity is 0.753 (0.693 – 0.807). PNAIDS achieved diagnostic accuracy similar to that of the expert respiratory specialists (AUC difference: 0.0036 [-0.0426 - 0.0497]; p = 0.8801) and superior when compared with Mayo Clinic’s model (0.120 [0.0649 - 0.176], p < 0·0001), expert radiologists (0.0620 [0.0124 - 0.112], p = 0.0142) and competent radiologists (0.0751 [0.0248 - 0.125], p = 0.0034). 11 selected participants were suggested negative in AI results but positive in respiratory specialists’ result. 8 of them were malignant in histopathological diagnosis with tested more than 3 CACs in their blood. Conclusions: PNAIDS achieved high diagnostic accuracy in differential diagnoses between benign and malignant pulmonary nodules, with diagnostic accuracy similar to that of expert respiratory specialists and was superior to that of Mayo Clinic’s model and radiologists. CACs may be able to assist CT-based AI in improving their effectiveness but it still need more data to be proved. Clinical trial information: ChiCTR1900026233.


Author(s):  
T. Maria Patricia Peeris ◽  
Prof. P. Brundha

Lungs are the most crucial organs in a human body. Since the cancer detection began, lung cancer has been the most common terminal disease amongst all type of cancers. The contribution of deep learning, especially the convolution neural networks has widely reduced the mortality rates resulting from lung cancer. The classification of Computed Tomography (CT) images has enhanced the early diagnosis of lung cancer that has enabled victims to undergo treatment at an early stage. The resolution of the CT images have been variedly used for the accuracy of the model. Besides, the detection of lumps or anomalies in the images has greatly supported early diagnosis. Classification plays a vital role in the deep learning models to sort out the input images as positive and negative based on the attribute of the model built. However, the generalisation of classifiers has reduced the accuracy of the corresponding models built. To increase the accuracy and efficiency of the deep learning model, an optimised classification technique is used to predict lung cancer from the CT images. The purpose of optimisation here will enable the model to adapt stipulated feature extraction process according to the input images fed into the network. The model will be trained for predicting purpose given any resolution of the images. KEYWORDS: Lung cancer, CT images, Classification techniques, Optimised Classification, Prediction


2021 ◽  
Vol 2078 (1) ◽  
pp. 012048
Author(s):  
Jiasheng Ni

Abstract Remote medical prognosis application is a category of medical tests tool designed to collect patients’ body conditions and offer diagnosis results synchronously. However, most online applications are predicated on a simple chat bot which typically redirect patients to other online medical websites, which undermines the user experience and may prompt useless information for their reference. To tackle these issues, this paper proposed a medical prognosis application with deep learning techniques for a more responsive and intelligent medical prognosis procedure. This application can be break down into three parts-lung cancer detection, a database-supporting medical QA bot and a Hierarchical Bidirectional LSTM model (HBDA). A 3D-CNN model is built for the lung cancer detection, with a sequence of sliced CT images as inputs and outputs a probability scaler for tumor indications. A knowledge graph is applied in the medical QA bot implementation and the HBDA model is designed for semantic segmentation in order to better capture users’ intention in medical questions. For the performance of the medical prognosis, since we have limited computer memory, the 3D-CNN didn’t perform very well on detecting tumor conditions in the CT images with accuracy at around 70%. The knowledge graph-based medical QA bot intelligently recognize the underlying pattern in patients’ question and delivered decent medical response. The HBDA model performs well on distinguish the similarities and disparities between various medical questions, reaching accuracy at 90%. These results shed light for the feasibility of utilizing deep learning techniques such as 3D-CNN, Knowledge Graph, and Hierarchical Bi-directional LSTM to simulate the medical prognosis process.


Sign in / Sign up

Export Citation Format

Share Document