scholarly journals Mathematical Modelling and Optimisation of Low-Temperature Drying on Quality Aspects of Rough Rice

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shakeel Ahmed Soomro ◽  
Kunjie Chen ◽  
Sohail Ahmed Soomro

Rice when harvested normally has a high moisture content of 20–25% which requires immediate drying, reducing its mass loss and preventing it to spoil. This situation is more crucial with the areas under humid tropical conditions, where moisture and temperature mainly play an important role in deteriorating the quality of rough rice. Keeping the importance of quality attributes of rough rice, the study was carried out to assess the effects of low-temperature drying and suggest an optimum condition. Response surface methodology (RSM) with a central composite design was employed to study the effects of variables, i.e., temperature (X1), time (X2), and air velocity (X3) on responses, i.e., head rice yield (HRY), hardness, lightness, and cooking time. The experimental data were fitted to the quadratic model, studying the relationship between independent and dependent variables. The results revealed that the HRY, hardness, lightness, and cooking time increased with increasing variables, whereas for HRY, it particularly increased and then decreased. It was observed that temperature had more influence on the quality of rough rice followed by time and velocity. Results for analysis of variance revealed that the quality aspects of rough rice were significantly (p<0.05) affected by temperature and time, whereas for velocity, it only significantly affected hardness. The optimal drying conditions predicted by RSM for variables were 25°C, 600 min, and 1 m·s−1, and the optimal predicted HRY, hardness, lightness, and cooking time were 73.93%, 38.28 N, 71.40, and 27.58 min respectively. Acceptable values of R2, Adj R2, and nonsignificance of lack of fit demonstrated that the model applied was adequate and can be used for optimization. The study concluded that the RSM with a central composite design was successfully used to study the dependence of quality aspects of rough rice at low temperature and can be utilized by the rice processing industries.

2019 ◽  
Vol 4 (9) ◽  
pp. 149-152
Author(s):  
Andrew Ozigagun ◽  
Raphael Biu

Welding is a multi-input multi-output fabrication process, which requires a multi-response optimization technique. In this present work, the effect of heat affected zone and percentage dilution on the quality of Tungsten Inert Gas welded joints was investigated using mild steel plates. The Central Composite Design matrix was adopted to perform the welding experiment and collect the data, thereafter Response Surface Methodology (RSM) models was employed to minimize heat affected zone and percentage dilution with very significant statistical results. The result shows that the quadratic model was the most suitable for the HAZ data and the percentage dilution data with a P-value < 0.05 and R2 value of 88% and 90% for the HAZ and percentage dilution respectively.


Water SA ◽  
2020 ◽  
Vol 46 (2 April) ◽  
Author(s):  
Wassila Lazli ◽  
Amina Hellal

This study reports the biosorption of phenol using dead leaves of Posidonia oceanica (PO), an endemic seagrass in the Mediterranean Sea. The PO dead leaves were pre-treated with sulfuric acid and carbonized at 500°C for 2 h to increase their adsorptive capacity. Leaves were then immobilized in calcium alginate beads to address problems that arise when free particulate biosorbents are used. Response surface methodology (RSM) based on central composite design (CCD) was carried out to optimize key variables, viz., initial phenol concentration (100–500 mg/L), biosorbent dosage (0.05–0.1 g/50 mL), and alginate beads to solution ratio (1/10–2/10). The effect of the operating variables on phenol biosorption capacity was studied in a batch system and a mathematical model showing the influence of each variable and their interactions was obtained. The predicted second-order quadratic model for the response variable was significant (p < 0.01). Further, an adjusted squared correlation coefficient, R2 (adj) of 97.7% indicated a satisfactory fit of the model. The results of CCD showed maximum biosorption capacity of about 127 mg/g at 500 mg/L initial phenol concentration, 1 g/L biosorbent dosage, and at 1.85/10 composite beads to solution ratio. This work demonstrates the suitability of using PO dead leaves as an effective low-cost biosorbent for the removal of phenol.  


2021 ◽  
Vol 56 (2) ◽  
pp. 133-140
Author(s):  
AK Sarker ◽  
M Rashid ◽  
DC Roy ◽  
M Musarrat ◽  
UH Bithi

Ginger powder was prepared using different low temperature drying techniques and their nutritional, phytochemicals, functional and sensory quality were investigated. Moisture content was significantly (p<0.05) higher (7.16±0.04%) in shade dried powder and lowest in oven dried powder. Protein, fat and fiber contents varied with drying techniques ranging from 6.08±0.05 to 6.68±0.07%, 1.08±0.16 to 1.39±0.25% and 3.86±0.13 to 5.11±0.06% respectively. Highest alkaloid content was found in mechanical dried powder (4.44±0.04%), while highest flavonoid content was found in oven dried ginger powder (4.67±0.07%) and maximum saponin content was recorded in shade dried powder (2.67±0.10%). Highest ascorbic acid content (3.53±0.08 mg/100g) was found in shade dried powder and lowest was recorded in oven dried ginger powder (3.53±0.08 mg/100g). Sun drying technique exhibited better nutritional and sensory quality. The sensory score demonstrated that acceptance of all dried ginger powder was in the range of liked very much to liked moderately by the panelist. Low temperature drying techniques have positive significance on retaining phytochemicals and sensory quality of processed ginger. Bangladesh J. Sci. Ind. Res.56(2), 133-140, 2021


2019 ◽  
Vol 6 (2) ◽  
pp. 164
Author(s):  
Rofiq Sunaryanto ◽  
Diana Nurani

Response Surface Optimization of Medium Fermentation for Streptomyces prasinopilosus as An Antifungal against Ganoderma boninenseGanoderma boninense is one of the pathogenic fungi that cause basal stem rot (BPB) on oil palm plants. This research aims to study the effect of carbon sources, nitrogen sources, and minerals on the production of Streptomyces prasinopilosus active compounds. Lactose, yeast extract, and minerals are medium components that show a real influence on the production of S. prasinopilosus active compounds. Optimization of the factors that have significant influence was predicted by the second-order model, statistically through a central composite design (CCD). The highest S. prasinopilosus active compound production, with a medium composition of 44.77 g L-1 lactose, 13.02 g L-1 yeast extract, and 15.95 mL L-1 mineral solution, was predicted by the quadratic model to reach 32269366.338 peak area unit on high-performance liquid chromatography (HPLC). The verification of the mathematical model of the production of the active compounds through experiments in the laboratory was 27,203,907.310 peak area unit. This result was 15.7% lower compared to the result of the quadratic model. Optimization increased S. prasinopilosus active compound 9-fold compared to that before optimization.Keywords: active compound; G. boninense; optimization; RSM; S. prasinopilosus ABSTRAKGanoderma boninense merupakan salah satu jamur patogen yang menyebabkan penyakit busuk pangkal batang atau biasa disebut BPB pada tanaman kelapa sawit. Penelitian bertujuan mempelajari pengaruh sumber karbon, sumber nitrogen, dan mineral terhadap produksi senyawa aktif S. prasinopilosus. Laktosa, yeast extract, dan mineral adalah komponen medium yang menunjukkan pengaruh nyata terhadap produksi senyawa aktif S. prasinopilosus. Optimasi terhadap faktor yang berpengaruh nyata diprediksi dengan model orde dua melalui rancangan statistis central composite design (CCD). Produksi senyawa aktif S. prasinopilosus tertinggi diprediksi oleh model kuadratik mencapai 32269366,338 luasan puncak kromatografi cair kinerja tinggi (KCKT) dengan komposisi medium laktosa 44,77 g L-1, yeast extract 13,02 g L-1, dan larutan mineral 15,95 mL L-1. Verifikasi model matematis produksi senyawa aktif yang dihasilkan melalui percobaan di laboratorium adalah sebesar 27.203.907,310 luasan puncak kromatogram KCKT. Hasil ini lebih rendah 15,7% dibandingkan dengan model kuadratik hasil optimasi. Optimasi meningkatkan senyawa aktif S. prasinopilosus 9 kali lipat dibandingkan sebelum optimasi.


2021 ◽  
Vol 1 (2) ◽  
pp. 012-023
Author(s):  
Benson Chinweuba Udeh ◽  
Chidinma Lovelyn Ani ◽  
Monday Omotioma

Calcination of Nkalagu limestone for the production of agricultural quicklime is presented. It entails improving the quality of limestone through calcination process. Appropriate scientific instruments/techniques (x-ray diffractometer and scanning electron microscopy) were used for the characterization of the uncalcined and calcined limestone samples. Effects of calcination variables on the quicklime yield were examined. Central composite design of design expert software was used to optimize the calcination process. Analyses of the results revealed that calcite was the major limestone’s mineralogical composition. Quadratic model adequately described the relationship between quicklime yield and calcination factors of temperature, particle size and time. Quadratic model adequately described the relationship between quicklime yield and calcination factors of temperature, particle size and time. The optimum yield of 74.00% was obtained at optima operating conditions; temperature of 937.41 0C, particle size of 85.99µm and time of 3.7 hrs. Characteristics of the quicklime showed that the calcination improved the quality of the sample in terms of mineralogical properties. It is recommended that the generated model should be used to develop chemical plant/equipment for limestone calcination process.


Author(s):  
Vadim PAZIUK ◽  
◽  
Vitalii VYSHNEVSKIY ◽  
Oleksii TOKARCHUK ◽  
Ihor KUPCHUK ◽  
...  

It is important to study the patterns of drying grain seeds in order to improve the energy efficiency of the process. Energy efficiency is one of the main parameters that define the choice of a drying schedule. Traditional drying technologies are based on low temperature schedules, which do not allow significantly intensifying the process by increasing the temperature of the heat agent because of substantial reductions in the quality of the material. To adequately assess the drying schedules, we conducted the study of drying grain seeds at low temperatures aimed to preserve the seed properties of the material. To increase the energy efficiency of the drying process, a step-by-step descending low-temperature drying schedule was suggested, which provides for the required quality of seed material. All the proposed technical solutions for the energy-efficient schedules of drying grain seeds were summarized in the recommendations for industrial drying in column type direct-flow grain dryers.


Author(s):  
Abubakar Muhammad ◽  
Ahmed Lawal Mashi

Photo-fenton oxidation technique is one of the emerging oxidation processes explored in treatment of organic pollutants in aqueous solutions. This research is focused on utilization of Fe(II) loaded activated carbon and H2O2(aq) in a photofenton process to generate hydroxyl radicals that mineralize methyl orange dyes. Samples of activated carbon were treated with Fe(NO3)2(aq) and characterized using SEM, pHZPC, specific surface area and boehm’s titration. The degradation of methyl orange by the iron loaded activated carbon (Fe-Ac), via photo-Fenton process, was investigated in lab-scale defined by experimental design. Central composite design (CCD) was used to evaluate the effects of the five independent variables considered for the optimization of the oxidative process: time, FeAc dose, methyl orange concentration, pH and H2O2 concentrations. In the optimization, the correlation coefficients (R2 ) for the quadratic model was 0.9941. Optimum reaction conditions were obtained at pH = 3, catalyst dose = 0.1 mg/100ml, H2O2 = 0.62ml, methyl orange concentration = 5mg/l and time = 30 minutes.


2009 ◽  
Vol 34 (5) ◽  
pp. 351-357 ◽  
Author(s):  
Hoon Kim ◽  
Jae-Woong Han

2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Akram A. Haji ◽  
Nidhal M.Sh. Mohammed

The present study was designed to optimizing the adsorption of As (V) onto potato peel derived activated carbon (MPP-AC) by employing response surface method and central composite design. Adsorbent of cheap and locally available potato residue was produced based on chemical activation with H3PO4 subsequently carbonization to produce the porous activated carbon. The individual and interactive effects of five variables including initial arsenic concentration, temperature, time, dosage amount and pH of the medium were investigated. Based on the statistic analysis (ANOVA), the quadratic model was developed associating the adsorption capacity (qe). The optimum conditions were obtained of 9.98 mg L-1 of initial As (V) concentration, 28 °C of temperature, 39.7 min of time, 0.97 g of adsorbent dose and 7.3 of pH. The maximum adsorption capacity was 0.27 mg g-1 and 76.5% removal efficiency. The equilibrium isotherms and kinetic studies for estimating the mechanism of process demonstrated a good fit to Langmuir model and the pseudo-second order, respectively. The results of this study showed that the feasibility of central composite design for control adsorption process and indicated the use of activated carbon of potato residue have important implications for As (V) removal.


Author(s):  
Numchok Manmai ◽  
Katherine Bautista ◽  
Yuwalee Unpaprom ◽  
Rameshprabu Ramaraj

This paper reports the comparison of an optimized pretreatment model for Reducing Sugar (RS) production from Sugarcane leaf (SL) using NaOH to depolymerize of lignocellulosic biomass. The addition variables for a pretreatment model consisted of NaOH concentrations, heating temperatures and pretreatment times in the variety of 1-2% (v/v), 30-40 °C and 1-3 days individually. After pretreatment RS was estimated to transform into energy, both of RS and the energy were optimized by Respond surface methodology (RSM) on Central composite design (CCD). The models showed high determinational coefficients (R2) above 0.9876. Process optimization provided highest RS yield and energy of 5.632 g/L and 90.112 kJ/L. for NaOH pretreatment at condition 2% (v/v) NaOH, low temperature (40 °C) for 3 days. This report presented demonstrate that sugarcane leaf waste which is usually burnt after harvesting can be a part of renewable source for the biofuel production.


Sign in / Sign up

Export Citation Format

Share Document