scholarly journals Exosomes Derived from Human Urine-Derived Stem Cells Inhibit Intervertebral Disc Degeneration by Ameliorating Endoplasmic Reticulum Stress

2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
HongFei Xiang ◽  
WeiLiang Su ◽  
XiaoLin Wu ◽  
WuJun Chen ◽  
WenBin Cong ◽  
...  

Objective. This study is aimed at determining the effects of human urine-derived stem cell-derived exosomes (USCs-exos) on pressure-induced nucleus pulposus cell (NPC) apoptosis and intervertebral disc degeneration (IDD) and on the ERK and AKT signaling pathways. Methods. The NPCs were obtained from patients with herniated lumbar discs. Western blot analysis (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine endoplasmic reticulum (ER) stress levels of NPCs under stress. Human USCs were identified using an inverted microscope, three-line differentiation experiments, and flow cytometry. A transmission microscope, nanoparticle size analysis, and WB procedures were used to identify the extracted exosomes and observe NPC uptake. A control group, a 48 h group, and a USCs-exos group were established. The control group was untreated, and the 48 h group was pressure-trained for 48 h, while the USCs-exos group was pressure-trained for 48 h and treated with USCs-exos. WB, qRT-PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis were used to determine the ER stress levels in stress conditions and after exosomal treatment. The AKT and ERK pathways were partially detected. Magnetic Resonance Imaging (MRI) and computed tomography (CT) were used to evaluate cell degeneration while exosomal effects on the intervertebral disc (IVD) tissue were determined by hematoxylin and eosin (HE) staining, Safranin O-fast green staining, immunohistochemical staining (IHC), nuclear magnetic resonance (NMR), spectrometric detection, and total correlation spectroscopy (TOCSY). IVD metabolites were also identified and quantified. Results. After pressure culture, ER stress markers (GRP78 and C/EBP homologous protein (CHOP)) in the NPCs were significantly elevated with time ( p < 0.05 ). Human USCs are short and spindle-shaped. They can successfully undergo osteogenic, adipogenic, and chondrogenic differentiation. In this study, these stem cells were found to be positive for CD29, CD44, and CD73. The exosomes were centrally located with a diameter of 50-100 nm. CD63 and Tsg101 were highly expressed while the expression of Calnexin was suppressed. The exosomes can be ingested by NPCs. USCs-exos significantly improved ER stress responses and inhibited excessive activation of the unfolded protein response (UPR) as well as cell apoptosis and disc degeneration through the AKT and ERK signaling pathways ( p < 0.05 ). Conclusion. Through the AKT and ERK signaling pathways, USCs-exos significantly inhibit ER stress-induced cell apoptosis and IDD under pressure conditions. It is, therefore, a viable therapeutic strategy.

2020 ◽  
Author(s):  
Liwen Luo ◽  
Xiuying Jian ◽  
Hui Sun ◽  
Jinghao Qin ◽  
Yanqiu Wang ◽  
...  

Abstract Background Nucleus pulposus cells (NPCs) apoptosis is an important factor in exacerbating intervertebral disc degeneration (IVDD) that can be effectively suppressed by exosomes. The aim of this study was to reaearch whether normal cartilage endplate stem cells (CESCs) derived exosomes (N-Exos) were more conducive to activation of autophagy and inhibition of NPCs apoptosis and IVDD than degenerated CESCs derived exosomes (D-Exos) or not. Methods Rat CESCs were isolated and identified, and the exosomes produced by normal CESCs and degenerated CESCs were extracted. The bioinformatics differences between normal CESCs derived exosomes (N-Exos) and degenerated CESCs derived exosome (D-Exos) were analyzed by mass spectrometry, heat map and KEGG enrichment analysis biology. The effects of N-Exos and D-Exos on the inhibition of NPCs apoptosis were examined by TUNEL staining, flow cytometry and western blotting. The involvement of the AKT and autophagy signaling pathways was investigated using the signaling inhibitor LY294002. Magnetic resonance imaging, western blotting and immunofluorescence staining were used to evaluate the therapeutic effects of N-Exos in vivo. Results CESCs in the cartilage endplate (CEP) could secrete a large amount of exosomes. N-Exos were more conducive to activation of autophagy than D-Exos. The apoptotic rate of NPCs was decreased obviously after treatment with N-Exos than after D-Exos treatment. N-Exos inhibited NPCs apoptosis or attenuated IVDD in a rat tail model by activating the AKT and autophagy signaling pathways. Conclusions It was the first to confirm that CEP could delay the progression of IVDD through exosomes secreted by normal CESCs. The therapeutic effects of N-Exos on inhibiting NPCs apoptosis and slowing IVDD progression was more effective than D-Exos by activating the PI3K/AKT/autophagy pathway, which explained the reason that the incidence of IVDD was increased after inflammation of the CEP.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Chao Ma ◽  
Ran Wang ◽  
Dingliang Zhao ◽  
Naikun Wang ◽  
Ying Han ◽  
...  

Objective. Platelet-rich plasma (PRP) containing multiple growth factors is a promising strategy for disc degeneration. Thus, this study hypothesizes that the combination of PRP and adipose tissue-derived stromal cells (ADSCs) may repair degenerative disc more effectively than using each one of them alone. Methods. The model of early intervertebral disc degeneration was induced by annular puncture in the New Zealand rabbit. Autologous PRP was extracted from fresh arterial blood by using two centrifugation techniques. ADSC was offered by the Center for Clinic Stem Cell Research. Four weeks after the first experiment, PRP or ADSCs or a combination of PRP and ADSCs was injected into the punctured intervertebral disc. Four weeks later, disc height and signal intensity on T2-weighted magnetic resonance imaging (MRI) were assessed. Results. One month after puncture, we detected relatively narrow discs and lower signal intensity in MRI T2-weighted images. At four weeks after injection, the PRP-ADSC group statistically significantly restored discs, compared with PRP, ADSCs, or negative control group. Conclusions. The combination of PRP and ADSCs shows an effective potential to restore degenerated intervertebral discs in the rabbit.


2019 ◽  
Vol 51 (6) ◽  
pp. 571-579 ◽  
Author(s):  
Shunmin Wang ◽  
Jingchuan Sun ◽  
Haisong Yang ◽  
Weiguo Zou ◽  
Bing Zheng ◽  
...  

AbstractThe functional changes of nucleus pulposus (NP) cells are considered to be the initiating factors of intervertebral disc degeneration (IDD), and the differentially expressed circRNAs in NP cells may play an important role in the process of IDD. To identify circular RNAs (circRNAs) associated with human IDD, we isolated the NP cells from human degenerated and non-degenerated intervertebral disc and identified NP cells by microscopy and cell proliferation. CircRNA microarray expression profiles were obtained from NP cells of degenerated and non-degenerated intervertebral disc and further validated by quantitative reverse transcription PCR (qRT-PCR). The expression data were analyzed by bioinformatics. Microarray analysis identified 7294 circRNAs differentially expressed in degenerated human IDD NP cells. Among them, 3724 circRNAs were up-regulated and 3570 circRNAs were down-regulated by more than 2 folds. After validating by qRT-PCR, we predicted the possible miRNAs of the top dysregulated circRNAs using TargetScan, and miRanda. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most modulated circRNAs regulate the viability, degradation, apoptosis and oxidative stress in NP cells, and the possible mechanism underlying IDD was discussed. These results revealed that circRNAs may play a role in IDD and might be a promising candidate molecular target for gene therapy.


AGE ◽  
2009 ◽  
Vol 32 (2) ◽  
pp. 161-177 ◽  
Author(s):  
Chang-Qing Zhao ◽  
Yue-Hui Zhang ◽  
Sheng-Dan Jiang ◽  
Lei-Sheng Jiang ◽  
Li-Yang Dai

2018 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Low back pain (LBP) mostly caused by disc degeneration, reflects to a tremendous of health care system and economy. More knowledge about these underlying pathologies will improve the opportunities that may represent critical therapeutic targets.CONTENT: Basic research is advancing the understanding of the pathogenesis and management of LBP at the molecular and genetic levels. Cytokines such as matrix metalloproteinases, phospholipase A2, nitric oxide, and tumor necrosis factor-α are thought to contribute to the development of LBP. Mesenchymal stem cells (MSCs) transplant to cartilage-like cells and secrete extracellular matrix and encourage nucleus pulposus (NP) cell activity inhibiting NP cell apoptosis, together with some chemical mediators such as cytokines and growth factors become a safe and effective new strategy for intervertebral disc degeneration (IDD) treatment and regeneration.SUMMARY: IDD occurs where there is a loss of homeostatic balance with a predominantly catabolic metabolic profile. A basic understanding of the molecular changes occurring in the degenerating disc is important for practicing clinicians to help them to inform patients to alter lifestyle choices, identify beneficial or harmful supplements, or offer new biologic, genetic, or stem cell therapies.KEYWORDS: low back pain (LBP), intervertebral disc (IVD), degeneration, nucleus pulposus (NP), annulus fibrosus (AF), extracellular matrix (ECM), genetic, stem cells


Sign in / Sign up

Export Citation Format

Share Document