scholarly journals Blood Lead Levels among Blood Donors and High-Risk Occupational Groups in a Mining Area in Ghana: Implications for Blood Transfusion among Vulnerable Populations

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Veronica Agyemang ◽  
Joseph K. Acquaye ◽  
Samuel B. E. Harrison ◽  
Felix B. Oppong ◽  
Stephany Gyaase ◽  
...  

Lead poisoning has been a major global health problem for decades, and blood transfusion has been suspected as a neglected potential source of lead exposure. Children and pregnant women are most vulnerable to the toxic effects of lead and over 40 percent of blood transfused in Ghana is given to children under 5 years. However, there is little data on the levels of lead in donor blood and the main sources of lead exposure in the Ghanaian population. This study compared blood lead levels (BLL) among selected occupations at risk of lead exposure with healthy blood donors in nonexposed occupations in a Ghanaian mining area. We enrolled 40 participants each from the following high-risk occupational groups: small scale miners, painters/sprayers, drivers/fuel station attendants, and auto-mechanics as well as 40 healthy blood donors (made up of teachers, traders, and office workers). One millilitre of blood was collected from each participant for determination of their BLL, haemoglobin concentration, and blood film morphology. A total of 200 participants made up of 186 (93%) males and 14 (7%) females were enrolled. The mean age of participants was 28.6 ± 8.2 years and their geometric mean (GM) BLL was 6.3 GSD 1.4 µg/dL [95% CI: 6.0 – 6.6]. Participants in high risk occupations had significantly higher GM BLL of 6.7 µg/dL [95% CI :6.4−7.0] compared to 5.0 µg/dL [95% CI: 4.4−5.7] for healthy blood donors [p < 0.001]. The prevalence of elevated BLL (≥5 µg/dL) among the entire study participants, high risk occupations and blood donors was 84.5%, 89.4% and 65% respectively. There was significant association between elevated BLLs and working in an at-risk occupational group [aOR = 3.58, p = 0.014]. Haemoglobin concentration was not significantly associated with elevated BLLs. Basophilic stippling was not observed in any of the blood smears. Blood lead levels were high in blood donors and at-risk occupations in the study area and occupation was associated with elevated BLLs. It is important that measures to safeguard the integrity of donor blood go beyond screening for infectious diseases to include screening individuals in high-risk occupations for lead and other heavy metals to ensure that donor blood from such individuals is safe and does not pose potential danger to the health of vulnerable populations such as children and pregnant women.

PEDIATRICS ◽  
1994 ◽  
Vol 93 (2) ◽  
pp. 195-200
Author(s):  
Edward B. Hayes ◽  
Hyman G. Orbach ◽  
Alina M. Fernandez ◽  
Sheila Lyne ◽  
Thomas D. Matte ◽  
...  

Objectives. To evaluate trends in blood lead levels among children in Chicago from 1968 through 1988, and to determine the impact of the changes in the Centers for Disease Control and Prevention (CDC) blood lead level of concern. Methods. We reviewed a systematic sample of blood lead screening records of the Chicago Department of Health Laboratory for high-risk children aged 6 months to 5 years. Median blood lead levels for each quarter of the years 1974 through 1988 were determined and regressed against mean air lead levels recorded at air-monitoring stations in Chicago during the same period. Results. Median blood lead levels declined from 30 µg/dL in 1968 to 12 µg/dL in 1988, and were strongly associated with declining average air lead levels (r = .8, P &lt; .001) from 1974 through 1988. A regression model using log-transformed data predicted a decline of 0.56 µg/dL in the median blood lead level with each 0.1 µg/m3 decline in the mean air lead level when the air lead level was near 1.0 µg/m3; the predicted slope was steeper at lower air lead levels. Despite the nearly 20-fold reduction in air lead levels, the median blood lead level of 12 µg/dL in 1988 indicates substantial continuing lead exposure. The CDC blood lead level of concern was lowered twice from 1968 to 1988, but due to the decline in blood lead levels, fewer than 30% of the children were above the level of concern throughout most of the study. Conclusion. Although substantial lead exposure persists in Chicago, reductions in airborne lead emissions seem to have contributed to a long-term decline in the median blood lead level of high-risk Chicago children.


Ecotoxicology ◽  
2010 ◽  
Vol 20 (1) ◽  
pp. 131-138 ◽  
Author(s):  
P. Gómez-Ramírez ◽  
E. Martínez-López ◽  
P. María-Mojica ◽  
M. León-Ortega ◽  
A. J. García-Fernández

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Samantha Distler ◽  
Eri Saikawa

Abstract Lead poisoning is often seen as a problem of the past. While acute cases are now rare, there is no known safe level of lead for children and blood lead levels at and below 5 μg/dL are associated with neurological deficits. Previous work has established that risk factors for lead exposure include race/ethnicity, poverty, Medicaid enrollment, housing built before 1950, and age. Efficient blood lead screening is crucial in the greater Atlanta area as pockets of poverty and old housing put some children at particularly high risk for chronic exposure to low levels of lead. Here, 20 years of data on children’s blood lead levels in Georgia were used to create maps to assess the spatial distribution of blood lead screening and blood lead levels in the Atlanta area. ZIP code tabulation area (ZCTA)-level screening rates continue to be associated with relative poverty but not with housing age, a well-established risk factor for lead exposure. Building on previous research, a priority screening index based on poverty and housing age was also created to identify specific high-risk census tracts for screening within Atlanta ZCTAs. This index shows a total of 18 highest-priority census tracts in the greater Atlanta area. Together, these 18 tracts contain 2715 children under six years old, 1.7% of all children under six years old in the entire greater Atlanta area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Man Fung Tsoi ◽  
Chris Wai Hang Lo ◽  
Tommy Tsang Cheung ◽  
Bernard Man Yung Cheung

AbstractLead is a heavy metal without a biological role. High level of lead exposure is known to be associated with hypertension, but the risk at low levels of exposure is uncertain. In this study, data from US NHANES 1999–2016 were analyzed. Adults with blood lead and blood pressure measurements, or self-reported hypertension diagnosis, were included. If not already diagnosed, hypertension was defined according to the AHA/ACC 2017 hypertension guideline. Results were analyzed using R statistics version 3.5.1 with sample weight adjustment. Logistic regression was used to study the association between blood lead level and hypertension. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated. Altogether, 39,477 participants were included. Every doubling in blood lead level was associated with hypertension (OR [95%CI] 1.45 [1.40–1.50]), which remained significant after adjusting for demographics. Using quartile 1 as reference, higher blood lead levels were associated with increased adjusted odds of hypertension (Quartile 4 vs. Quartile 1: 1.22 [1.09–1.36]; Quartile 3 vs. Quartile 1: 1.15 [1.04–1.28]; Quartile 2 vs. Quartile 1: 1.14 [1.05–1.25]). In conclusion, blood lead level is associated with hypertension in the general population with blood lead levels below 5 µg/dL. Our findings suggest that reducing present levels of environmental lead exposure may bring cardiovascular benefits by reducing blood pressure.


Author(s):  
Carmen M. Dickinson-Copeland ◽  
Lilly Cheng Immergluck ◽  
Maria Britez ◽  
Fengxia Yan ◽  
Ruijin Geng ◽  
...  

Lead (Pb) is a naturally occurring, highly toxic metal that has adverse effects on children across a range of exposure levels. Limited screening programs leave many children at risk for chronic low-level lead exposure and there is little understanding of what factors may be used to identify children at risk. We characterize the distribution of blood lead levels (BLLs) in children aged 0–72 months and their associations with sociodemographic and area-level variables. Data from the Georgia Department of Public Health’s Healthy Homes for Lead Prevention Program surveillance database was used to describe the distribution of BLLs in children living in the metro Atlanta area from 2010 to 2018. Residential addresses were geocoded, and “Hotspot” analyses were performed to determine if BLLs were spatially clustered. Multilevel regression models were used to identify factors associated with clinical BBLs (≥5 µg/dL) and sub-clinical BLLs (2 to <5 µg/dL). From 2010 to 2018, geographically defined hotspots for both clinical and sub-clinical BLLs diffused from the city-central area of Atlanta into suburban areas. Multilevel regression analysis revealed non-Medicaid insurance, the proportion of renters in a given geographical area, and proportion of individuals with a GED/high school diploma as predictors that distinguish children with BLLs 2 to <5 µg/dL from those with lower (<2 µg/dL) or higher (≥5 µg/dL) BLLs. Over half of the study children had BLLs between 2 and 5 µg/dL, a range that does not currently trigger public health measures but that could result in adverse developmental outcomes if ignored.


2001 ◽  
Vol 56 (6) ◽  
pp. 501-505 ◽  
Author(s):  
Aysha Habib Khan ◽  
Amanullah Khan ◽  
Farooq Ghani ◽  
Muhammad Khurshid

2009 ◽  
Vol 47 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Kayihan PALA ◽  
Alpaslan TURKKAN ◽  
Seref GUCER ◽  
Erdinc OSMAN ◽  
Hamdi AYTEKIN

Sign in / Sign up

Export Citation Format

Share Document