scholarly journals Optimisation of External Factors for the Growth of Francisella novicida within Dictyostelium discoideum

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ina Kelava ◽  
Valentina Marecic ◽  
Petra Fucak ◽  
Elena Ivek ◽  
Dominik Kolaric ◽  
...  

The amoeba Dictyostelium discoideum has been used as a model organism to study host-pathogen interaction in many intracellular bacteria. Francisella tularensis is a Gram-negative, highly infectious bacterium that causes the zoonotic disease tularemia. The bacterium is able to replicate in different phagocytic and nonphagocytic cells including mammalian, amoebae, and arthropod cells. The aim of this study was to determine the optimal temperature and infection dose in the interaction of Francisella novicida with D. discoideum in order to establish a model of Francisella infection in the social amoeba. The amoeba cells were infected with a different multiplicity of infection (5, 10, and 100) and incubated at different temperatures (22, 25, 27, 30, and 37°C). The number of intracellular bacteria within D. discoideum, as well as cytotoxicity, was determined at 2, 4, 24, 48, and 72 hours after infection. Our results showed that the optimal temperature for Francisella intracellular replication within amoeba is 30°C with the MOI of 10. We can conclude that this MOI and temperature induced the optimal growth of bacteria in Dictyostelium with low cytotoxicity.

2018 ◽  
Author(s):  
Mehak Rafiq

Proteolysis is increasingly documented as a method of regulation of mitochondrial function. Our studies of rhomboidfamily proteins’ roles in organelles show that this is also the case in the social amoeba Dictyostelium discoideum, in which four of these membrane-bound, evolutionarily ubiquitous, serine proteases are found. Rhomboid proteases act on disparate substrates in different organisms so far studied, but their mode of action is conserved: their location in the membrane means that their membrane-tethered substrates can act in signalling upon release, or be activated, by rhomboid-mediated cleavage. Among eukaryotic rhomboids is the mitochondrial protease ‘PARL’, which ensures the maintenance of the structural and functional integrity of mitochondria and plastids, but we have found that other Dictyostelium rhomboids also affect the organelle. Studying the development and behaviour of Dictyostelium, a microbial model organism with a complex life cycle that includes uni- and multicellular stages, allowed investigation of the role of rhomboids in unicellular vegetative growth, multicellular development and sporulation, phagocytosis, and response to the environment. We found that two rhomboid-null mutants gave rise to changes in development, rhmA altering the response to chemoattractants and demonstrating decreased motility in general, whereas rhmB null cells had slower growth rates with decreased response to folic acid. RhmA, although located in the contractile vacuole, affects the ultrastructure of mitochondria, and RhmB-GFP fusions protein was localised to the mitochondrion. qPCR analysis revealed RhmA and RhmB transcript levels peaking during the multicellular growth phase and transcriptional networks suggest the Dictyostelium rhmA is regulated along with the orthologues of Saccharomyces cerevisiae mitochondrial rhomboid substrates.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 115 ◽  
Author(s):  
Meagan McLaren ◽  
Sabateeshan Mathavarajah ◽  
Robert Huber

The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259742
Author(s):  
Zahra Eidi ◽  
Najme Khorasani ◽  
Mehdi Sadeghi

Orchestrated chemical signaling of single cells sounds to be a linchpin of emerging organization and multicellular life form. The social amoeba Dictyostelium discoideum is a well-studied model organism to explore overall pictures of grouped behavior in developmental biology. The chemical waves secreted by aggregating Dictyostelium is a superb example of pattern formation. The waves are either circular or spiral in shape, according to the incremental population density of a self-aggregating community of individuals. Here, we revisit the spatiotemporal patterns that appear in an excitable medium due to synchronization of randomly firing individuals, but with a more parsimonious attitude. According to our model, a fraction of these individuals are less involved in amplifying external stimulants. Our simulations indicate that the cells enhance the system’s asymmetry and as a result, nucleate early sustainable spiral territory zones, provided that their relative population does not exceed a tolerable threshold.


Science ◽  
2010 ◽  
Vol 330 (6010) ◽  
pp. 1533-1536 ◽  
Author(s):  
Gareth Bloomfield ◽  
Jason Skelton ◽  
Alasdair Ivens ◽  
Yoshimasa Tanaka ◽  
Robert R. Kay

The genetics of sex determination remain mysterious in many organisms, including some that are otherwise well studied. Here we report the discovery and analysis of the mating-type locus of the model organism Dictyostelium discoideum. Three forms of a single genetic locus specify this species' three mating types: two versions of the locus are entirely different in sequence, and the third resembles a composite of the other two. Single, unrelated genes are sufficient to determine two of the mating types, whereas homologs of both these genes are required in the composite type. The key genes encode polypeptides that possess no recognizable similarity to established protein families. Sex determination in the social amoebae thus appears to use regulators that are unrelated to any others currently known.


2018 ◽  
Author(s):  
Mehak Rafiq ◽  
Elinor Thompson

Proteolysis is increasingly documented as a method of regulation of mitochondrial function. Our studies of rhomboidfamily proteins’ roles in organelles show that this is also the case in the social amoeba Dictyostelium discoideum, in which four of these membrane-bound, evolutionarily ubiquitous, serine proteases are found. Rhomboid proteases act on disparate substrates in different organisms so far studied, but their mode of action is conserved: their location in the membrane means that their membrane-tethered substrates can act in signalling upon release, or be activated, by rhomboid-mediated cleavage. Among eukaryotic rhomboids is the mitochondrial protease ‘PARL’, which ensures the maintenance of the structural and functional integrity of mitochondria and plastids, but we have found that other Dictyostelium rhomboids also affect the organelle. Studying the development and behaviour of Dictyostelium, a microbial model organism with a complex life cycle that includes uni- and multicellular stages, allowed investigation of the role of rhomboids in unicellular vegetative growth, multicellular development and sporulation, phagocytosis, and response to the environment. We found that two rhomboid-null mutants gave rise to changes in development, rhmA altering the response to chemoattractants and demonstrating decreased motility in general, whereas rhmB null cells had slower growth rates with decreased response to folic acid. RhmA, although located in the contractile vacuole, affects the ultrastructure of mitochondria, and RhmB-GFP fusions protein was localised to the mitochondrion. qPCR analysis revealed RhmA and RhmB transcript levels peaking during the multicellular growth phase and transcriptional networks suggest the Dictyostelium rhmA is regulated along with the orthologues of Saccharomyces cerevisiae mitochondrial rhomboid substrates.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 321-331 ◽  
Author(s):  
Salvatore Bozzaro

The social amoeba Dictyostelium discoideum has been a preferred model organism during the last 50 years, particularly for the study of cell motility and chemotaxis, phagocytosis and macropinocytosis, intercellular adhesion, pattern formation, caspase-independent cell death and more recently autophagy and social evolution. Being a soil amoeba and professional phagocyte, thus exposed to a variety of potential pathogens, D. discoideum has also proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections. The finding that the Dictyostelium genome harbours several homologs of human genes responsible for a variety of diseases has stimulated their analysis, providing new insights into the mechanism of action of the encoded proteins and in some cases into the defect underlying the disease. Recent technological developments have covered the genetic gap between mammals and non-mammalian model organisms, challenging the modelling role of the latter. Is there a future for Dictyostelium discoideum as a model organism?


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e46150 ◽  
Author(s):  
Clea Scala ◽  
Xiangjun Tian ◽  
Natasha J. Mehdiabadi ◽  
Margaret H. Smith ◽  
Gerda Saxer ◽  
...  

Microbiology ◽  
2021 ◽  
Author(s):  
Catherine J. Pears ◽  
Julian D. Gross

The social amoeba Dictyostelium discoideum is a versatile organism that is unusual in alternating between single-celled and multi-celled forms. It possesses highly-developed systems for cell motility and chemotaxis, phagocytosis, and developmental pattern formation. As a soil amoeba growing on microorganisms, it is exposed to many potential pathogens; it thus provides fruitful ways of investigating host-pathogen interactions and is emerging as an influential model for biomedical research.


Sign in / Sign up

Export Citation Format

Share Document