scholarly journals Network Dynamics of a Fractional-Order Phase-Locked Loop with Infinite Coexisting Attractors

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Anitha Karthikeyan ◽  
Karthikeyan Rajagopal

We have investigated a fractional-order phase-locked loop characterised by a third-order differential equation. The integer-order mathematical model of the phase-locked loop (PLL) is first converted to fractional order using the Caputo-Fabrizio method. The stability of the equilibrium points is discussed in detail in both parameter and fractional-order domain. The proposed fractional-order phase-locked loop (FOPLL) model shows multiple coexisting attractors which was not discussed in the earlier literature of PLL. The significance of these infinite coexisting attractors is that they exist in the operation region of the PLL between [−π,π] which increases the complexity of operation of the PLLs. Mainly when such FOPLLs are used in large-scale networks, the synchronisation of the FOPLLs becomes complicated and will result in unstable control conditions. Hence, studying the network dynamics of such FOPLLs is significant which motivates us to investigate the synchronisation phenomenon of the FOPLLs constructed in a square network. We could show that, because of the multiple coexisting attractors, the FOPLLs show various synchronisation phenomena, and more importantly in the chaotic region for lower fractional-order values, we could show that the FOPLLs are synchronised and this finding is very useful to completely analyse the FOPLL networks in high-frequency operations.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Na Liu ◽  
Yunliu Li ◽  
Junwei Sun ◽  
Jie Fang ◽  
Peng Liu

Outbreak and large-scale of the infectious diseases have caused enormous economic losses to all countries in the world. Constructing a network model which could reflect the transmission dynamics of the epidemics and investigating their transmission laws have a significant meaning in the precaution and control of the epidemics. In this article, a fractional-order SIS epidemic network model is proposed. First, an expression of the basic reproduction number is deduced. Second, applying the Lyapunov function, the stability of the equilibrium points about the infectious model is analyzed in detail. Finally, an example is present to verify the theoretical analysis. Furthermore, on account of the fractional-order coefficient, its influence on the transmission dynamics is also exhibited.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bo Yan ◽  
Shaobo He ◽  
Shaojie Wang

In this paper, a 4D fractional-order centrifugal flywheel governor system is proposed. Dynamics including the multistability of the system with the variation of system parameters and the derivative order are investigated by Lyapunov exponents (LEs), bifurcation diagram, phase portrait, entropy measure, and basins of attraction, numerically. It shows that the minimum order for chaos of the fractional-order centrifugal flywheel governor system is q = 0.97, and the system has rich dynamics and produces multiple coexisting attractors. Moreover, the system is controlled by introducing the adaptive controller which is proved by the Lyapunov stability theory. Numerical analysis results verify the effectiveness of the proposed method.


2018 ◽  
Author(s):  
Fei Xin ◽  
Feng Zhou ◽  
Xinqi Zhou ◽  
Xiaole Ma ◽  
Yayuan Geng ◽  
...  

AbstractAttention and salience processing have been linked to the intrinsic between- and within-network dynamics of large scale networks engaged in internal (default mode network, DN) and external attention allocation (dorsal attention, DAN, salience network, SN). The central oxytocin (OXT) system appears ideally organized to modulate widely distributed neural systems and to regulate the switch between internal attention and salient stimuli in the environment. The current randomized placebo (PLC) controlled between-subject pharmacological resting-state fMRI study in N = 187 (OXT, n = 94; n = 93; single-dose intranasal administration) healthy male and female participants employed an independent component analysis (ICA) approach to determine the modulatory effects of OXT on the within- and between-network dynamics of the DAN-SN-DN triple network system. OXT increased the functional integration between subsystems within SN and DN and increased functional segregation of the DN with the SN and DAN engaged in attentional control. Whereas no sex differences were observed, OXT effects on the DN-SN interaction were modulated by autism traits. Together, the findings suggest that OXT may facilitate efficient attentional allocation towards social cues by modulating the intrinsic functional dynamics between DN components engaged in social processing and large-scale networks involved in external attentional demands (SN, DAN).


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Zakia Hammouch ◽  
Toufik Mekkaoui

AbstractIn this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the efiectiveness of the proposed methods


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Li-xin Yang ◽  
Xiao-jun Liu

This paper proposes a new fractional-order chaotic system with five terms. Firstly, basic dynamical properties of the fractional-order system are investigated in terms of the stability of equilibrium points, Jacobian matrices theoretically. Furthermore, rich dynamics with interesting characteristics are demonstrated by phase portraits, bifurcation diagrams numerically. Besides, the control problem of the new fractional-order system is discussed via numerical simulations. Our results demonstrate that the new fractional-order system has compound structure.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250088 ◽  
Author(s):  
YONG XU ◽  
RENCAI GU ◽  
HUIQING ZHANG ◽  
DONGXI LI

This paper aims to investigate the phenomenon of Diffusionless Lorenz system with fractional-order. We discuss the stability of equilibrium points of the fractional-order system theoretically, and analyze the chaotic behaviors and typical bifurcations numerically. We find rich dynamics in fractional-order Diffusionless Lorenz system with appropriate fractional order and system parameters. Besides, the control problem of fractional-order Diffusionless Lorenz system is examined using feedback control technique, and simulation results show the effectiveness of the method.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Guangyi Wang ◽  
Chuanbao Shi ◽  
Xiaowei Wang ◽  
Fang Yuan

The coexisting oscillations are observed with a memcapacitor-based circuit that consists of two linear inductors, two linear resistors, and an active nonlinear charge-controlled memcapacitor. We analyze the dynamics of this circuit and find that it owns an infinite number of equilibrium points and coexisting attractors, which means extreme multistability arises. Furthermore, we also show the stability of the infinite many equilibria and analyze the coexistence of fix point, limit cycle, and chaotic attractor in detail. Finally, an experimental result of the proposed oscillator via an analog electronic circuit is given.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Sajad Jafari ◽  
Viet-Thanh Pham ◽  
Zhouchao Wei ◽  
Durairaj Premraj ◽  
...  

In this paper, the well-known Vallis model for El Niño is analyzed for the parameter condition [Formula: see text]. The conditions for the stability of the equilibrium points are derived. The condition for Hopf bifurcation occurring in the system for [Formula: see text] and [Formula: see text] are investigated. The multistability feature of the Vallis model when [Formula: see text] is explained with forward and backward continuation bifurcation plots and with the coexisting attractors. The creation of period doubling followed by their annihilation via inverse period-doubling bifurcation known as antimonotonicity occurrence in the Vallis model for [Formula: see text] is presented for the first time in the literature.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shahram Rezapour ◽  
Hakimeh Mohammadi

Abstract We study the SEIR epidemic model for the spread of AH1N1 influenza using the Caputo–Fabrizio fractional-order derivative. The reproduction number of system and equilibrium points are calculated, and the stability of the disease-free equilibrium point is investigated. We prove the existence of solution for the model by using fixed point theory. Using the fractional Euler method, we get an approximate solution to the model. In the numerical section, we present a simulation to examine the system, in which we calculate equilibrium points of the system and examine the behavior of the resulting functions at the equilibrium points. By calculating the results of the model for different fractional order, we examine the effect of the derivative order on the behavior of the resulting functions and obtained numerical values. We also calculate the results of the integer-order model and examine their differences with the results of the fractional-order model.


Sign in / Sign up

Export Citation Format

Share Document