scholarly journals Damage and Degradation of Concrete under Coupling Action of Freeze-Thaw Cycle and Sulfate Attack

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Wei Tian ◽  
Fangfang Gao

In this study, the mechanical behaviors, failure characteristics, and microstructure of concrete containing fly ash (FA) against combined freeze-thaw cycles and sulfate attack were studied compared with normal concrete, and the formation rates of corrosion products during coupling cycles were investigated. Results showed that, during the coupling action of freeze-thaw cycles and sodium sulfate solution, concrete containing 10% fly ash exposed in 5% sodium sulfate solution exhibited better freeze-thaw resistance. Meanwhile, the variation of compressive strength of concrete during the coupling cycles could be divided into two stages, including the strength enhancement stage and the strength reduction stage. Moreover, the proportion of micropores and capillary pores decreased obviously during combined freeze-thaw cycles and sulfate attack, and excessive concentration of sodium sulfate solution led to more macropores after high-frequency freeze-thaw cycles.

2013 ◽  
Vol 539 ◽  
pp. 124-129 ◽  
Author(s):  
Kai Wei Liu ◽  
Min Deng ◽  
Li Wu Mo

The resistance to sulfate attack of mortars containing 0%, 20%, and 40% of fly ash cured in 5 wt. % sodium sulfate solution at 20°C was investigated in this paper. Visual appearance, cracking analysis, velocity of ultrasonic wave and length change were applied to evaluate the sulfate resistance of mortars. The phases and microstructure of the reaction products due to sulfate attack were examined by XRD and SEM, and the pore structure of the mortars was analyzed by MIP. The effects of fly ash on the sulfate attack of mortars were analyzed. Results indicated that the addition of fly ash improved the resistance of sulfate attack significantly, this probably contributed to the pozzonlanic reaction of fly ash.


2013 ◽  
Vol 357-360 ◽  
pp. 939-943 ◽  
Author(s):  
Jian Gang Niu ◽  
Liang Yan ◽  
Hai Tao Zhai

Based on the coupling testing program of freeze-thaw and carbonation, the laboratory simulation test is carried out. The laws of carbonation depth of the fly ash concrete suffered the freeze-thaw cycle in different test modes and the influence of fly ash dosage on concrete carbonation depth after the freeze-thaw cycle are studied. Defining the influence coefficient of the freeze-thaw cycles on carbonation depth of concrete, the mechanism of coupling of freeze-thaw and carbonation is analyzed,and the role of freeze-thaw and carbonation in the coupling process are obtained.


1994 ◽  
Vol 370 ◽  
Author(s):  
D.P. Bentz ◽  
Nicos. S. Martys ◽  
P. Stutzman ◽  
M. S. Levenson ◽  
E.J. Garboczi ◽  
...  

AbstractX-ray microtomography can be used to generate three-dimensional 5123 images of random materials at a resolution of a few micrometers per voxel. This technique has been used to obtain an image of an ASTM C109 mortar sample that had been exposed to a sodium sulfate solution. The three-dimensional image clearly shows sand grains, cement paste, air voids, cracks, and needle-like crystals growing in the air voids. Volume fractions of sand and cement paste determined from the image agree well with the known quantities. Implications for the study of microstructure and proposed uses of X-ray microtomography on cement-based composites are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shaojie Chen ◽  
Zhen Zhang ◽  
Dawei Yin ◽  
Junbiao Ma

To research the properties of cemented coal gangue-fly ash backfill (CGFB) exposed to different concentrations of sodium sulfate solutions under drying-wetting cycles, the mass changes, uniaxial compressive strengths, sulfate ion contents at different depths, and microstructures of CGFB samples were measured in this study. The results show that the CGFB samples were damaged by salt crystallization in the dry state and attacked by the expansive products in the wet state. The sulfate ion contents in CGFB samples increased with the sulfate concentrations and drying-wetting cycles and decreased from the surface to the inside of the samples. The damage process of CGFB samples evolved from the surface to the inside. In the early stage of corrosion, sulfate ions adsorbed to the surface of CGFB samples and consumed nonhydrated particles to form acicular ettringite and other products that filled the material pores. For this stage, the driving force of sulfate ions to enter into the CGFB samples was the highest for the samples immersed in 15% sodium sulfate solution, and the masses and strengths increased the fastest. As the drying-wetting cycles continued, the nonhydrated particles inside the samples were nearly completely hydrated, and the samples were constantly damaged by salt crystallization and dissolution. The corrosion ions entered into the samples and consumed portlandite to produce a large amount of prismatic ettringite and aggravated the internal corrosion of CGFB samples. At the fifteenth drying-wetting cycle, the higher the salt concentration of the immersion solution was, the faster the masses and the strengths of CGFB samples decreased. Moreover, the surface spalling and failure of CGFB samples were more severe.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Boqiang Cui ◽  
Yin Liu ◽  
Hao Guo ◽  
Zhanxin Liu ◽  
Yao Lu

In order to study the effects of different concentrations of sulfate on the strength of fly ash-based coal mine filling paste, using variable control, mechanical analysis, and other means, the changes in the uniaxial compressive strengths of filling paste blocks soaked in different concentrations of sodium sulfate solution for different durations are studied, and their stress-strain curves are discussed. The hydrated products of each block are analyzed at different stages by XRD, and the results indicate that different concentrations of sodium sulfate solution have different effects on the strength of the filling paste after soaking for different durations. A sodium sulfate solution with a concentration of 5% had an activator effect on the fly ash-based filling paste and enhanced the strength of the filling paste. A sodium sulfate solution with a concentration of 10% and 15% increased the early strength of the paste test block faster, but after 60 d, the strength decreased. The stress-strain curves for these blocks show that the elastic moduli of the filling paste test blocks change irregularly, and it was found that with the increase in soaking time, the blocks soaked in the 10% and 15% sodium sulfate solutions developed fissures in the later stage that adversely affected the strength of the filling paste. The XRD results show that the filling paste test block hydration products are hydrated calcium silicate (C-S-H) based and that ettringite (AFt), beneficial to strength of the filling paste in proper quantities, appeared in the main product of the filling paste test blocks that were soaked in the sodium sulfate solution. With the increase in the concentration of the sodium sulfate solution, the AFt is generated in larger quantities, and gypsum crystals begin to appear, which is not conducive to the filling paste block strength.


2020 ◽  
Vol 70 (337) ◽  
pp. 212
Author(s):  
L. R. Santillán ◽  
F. Locati ◽  
Y. A. Villagrán-Zaccardi ◽  
C. J. Zega

The effect of recycled concrete aggregate (RCA) on concrete performance against external sulfate attack (ESA) is not yet fully known. In this paper, recycled aggregate concretes (RAC) with 0, 50, 75 and 100% of RCA contents were evaluated after 10 years of exposure immersed in 50g/l sodium sulfate solution. Sulfate ingress profiles were obtained by wet chemical analyses and FRX. Also, the mineralogy of the ingress profile was evaluated by thermogravimetric analyses. Finally, microcracking development in samples was evaluated by optical fluorescent microscopy image analysis. Although RAC showed a slight increase in sulfate ingress, due to its higher porosity (about 30% higher SO3 content near the surface for 50% or higher replacement ratio than control concrete), a dense new matrix still allows a good performance of RAC to external sulfate attack with even 100% RCA content.


2011 ◽  
Vol 308-310 ◽  
pp. 2555-2559
Author(s):  
Hong Mei Ai ◽  
Pu Guang Lu ◽  
Jun Ying Bai ◽  
Jing Jing Wei

To the High fly-ash content concrete(abbreviated HFCC) whose fly-ash adding amount is 50%~70%, the influence of actual water-binder ratio, fly-ash content, quality of fly-ash and compression strength on the freezing resistance of HFCC were studied; The critical freeze-thaw cycle times in this paper involved with mass loss rate Wn=5% and relative dynamic elastic modulus P=60%, the relationship between the critical freeze-thaw cycle times and the 28d compression strength of HFCC was analyzed; To HFCC without air-entraining agent, the experiment results showed that the freezing resistance decreased with the increase of actual water-binder ratio, the increase of fly-ash content and the reduce of fly-ash quality. The freeze-thaw damage of HFCC dues to the freeze-thaw degradation results from surface denudation.


Author(s):  
Zhongping Yang ◽  
Yao Wang ◽  
Denghua Li ◽  
Xuyong Li ◽  
Xinrong Liu

The solidification/stabilization (S/S) method is the usual technique for the remediation of soils polluted by heavy metal in recent years. However, freeze–thaw cycles, an important physical process producing weathering of materials, will affect the long-term stability of engineering characteristics in solidified contaminated soil. In addition, it is still questionable whether using large dosages of binders can enhance the engineering properties of solidified/stabilized contaminated soils. In this study, the three most commonly used binders (i.e., cement, quicklime, and fly ash), alone and mixed in different ratios, were thus added to lead-contaminated soil in various dosages, making a series of cured lead-contaminated soils with different dosages of binders. Afterward, unconfined compression strength tests, direct shear tests, and permeability tests were employed on the resulting samples to find the unconfined compressive strength (UCS), secant modulus ( E 50 ), internal friction angle ( φ ), cohesion ( c ), and permeability coefficient ( k ) of each solidified/stabilized lead-contaminated soil after 0, 3, 7, and 14 days of freeze–thaw cycles. This procedure was aimed at evaluating the influence of freeze–thaw cycle and binder dosage on engineering properties of solidified/stabilized lead-contaminated soils. Results of our experiments showed that cement/quicklime/fly ash could remediate lead-contaminated soils. However, it did not mean that the more the dosage of binder, the better the curing effect. There was a critical dosage. Excessive cementation of contaminated soils caused by too much binder would result in loss of strength and an increase in permeability. Furthermore, it was found that UCS,   E 50 , φ , c , and k values generally decreased with the increase in freeze–thaw cycle time—a deterioration effect on the engineering characteristics of solidified lead-contaminated soils. Avoiding excessive cementation, 2.5% cement or quicklime was favorable for the value of E 50 while a 2.5% fly ash additive was beneficial for the k value. It is also suggested that if the freeze–thaw cycle continues beyond the period supported by excessive cementation, such a cycle will rapidly destroy the original structure of the soil and create large cracks, leading to an increase in permeability. The results also showed that the contaminated soils with a larger dosage of binders exhibited more significant deterioration during freeze–thaw cycles.


Sign in / Sign up

Export Citation Format

Share Document