scholarly journals MEG3 Alleviated LPS-Induced Intestinal Injury in Sepsis by Modulating miR-129-5p and Surfactant Protein D

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xianjin Du ◽  
Dan Tian ◽  
Jie Wei ◽  
Chen Yan ◽  
Peng Hu ◽  
...  

Sepsis and intestinal injury triggered by sepsis are common in intensive care units, which can contribute to a high mortality. lncRNAs can modulate gene expression, and they are closely involved in multiple diseases, including sepsis. In our present study, we investigated the biological function of MEG3 in sepsis, especially during the intestinal injury. Currently, we observed that in LPS-induced sepsis mouse models, the intestinal injury was triggered. Meanwhile, we reported that MEG3 was greatly decreased in vivo, with an increase of miR-129-5p and inhibition of SP-D. Then, MEG3 was overexpressed, and we found that its overexpression repressed the intestinal injury via downregulating miR-129-5p in sepsis mice. Moreover, TNF-α and IL-6 expression was elevated in intestinal tissues compared to the control groups. MEG3 restrained the activation of TNF-α and IL-6, in sepsis models. Subsequently, to induce the inflammatory injury of sepsis, human colorectal Caco2 cells were treated with 10 ng/ml LPS. 10 ng/ml LPS significantly inhibited Caco2 cell proliferation and increased the apoptosis. Additionally, MEG3 was decreased whereas miR-129-5p was obviously increased in Caco2 cells incubated with LPS. Interestingly, we showed that MEG3 repressed cell apoptosis partly and enhanced Caco2 cell proliferation. miR-129-5p overexpression could reverse the effect of MEG3 in vitro. Previously, we proved SP-D was reduced in sepsis and it depressed the intestinal injury in vivo. Finally, the correlation among MEG3, miR-129-5p, and SP-D was predicted and confirmed in our investigation. These findings indicated that MEG3 might be a potential target for intestinal damage caused by sepsis via regulating miR-129-5p and SP-D.

2009 ◽  
Vol 77 (7) ◽  
pp. 2783-2794 ◽  
Author(s):  
Scarlett Geunes-Boyer ◽  
Timothy N. Oliver ◽  
Guilhem Janbon ◽  
Jennifer K. Lodge ◽  
Joseph Heitman ◽  
...  

ABSTRACT Cryptococcus neoformans is a facultative intracellular opportunistic pathogen and the leading cause of fungal meningitis in humans. In the absence of a protective cellular immune response, the inhalation of C. neoformans cells or spores results in pulmonary infection. C. neoformans cells produce a polysaccharide capsule composed predominantly of glucuronoxylomannan, which constitutes approximately 90% of the capsular material. In the lungs, surfactant protein A (SP-A) and SP-D contribute to immune defense by facilitating the aggregation, uptake, and killing of many microorganisms by phagocytic cells. We hypothesized that SP-D plays a role in C. neoformans pathogenesis by binding to and enhancing the phagocytosis of the yeast. Here, the abilities of SP-D to bind to and facilitate the phagocytosis and survival of the wild-type encapsulated strain H99 and the cap59Δ mutant hypocapsular strain are assessed. SP-D binding to cap59Δ mutant cells was approximately sixfold greater than binding to wild-type cells. SP-D enhanced the phagocytosis of cap59Δ cells by approximately fourfold in vitro. To investigate SP-D binding in vivo, SP-D−/− mice were intranasally inoculated with Alexa Fluor 488-labeled cap59Δ or H99 cells. By confocal microscopy, a greater number of phagocytosed C. neoformans cells in wild-type mice than in SP-D−/− mice was observed, consistent with in vitro data. Interestingly, SP-D protected C. neoformans cells against macrophage-mediated defense mechanisms in vitro, as demonstrated by an analysis of fungal viability using a CFU assay. These findings provide evidence that C. neoformans subverts host defense mechanisms involving surfactant, establishing a novel virulence paradigm that may be targeted for therapy.


2005 ◽  
Vol 73 (11) ◽  
pp. 7677-7686 ◽  
Author(s):  
Wafa Khamri ◽  
Anthony P. Moran ◽  
Mulugeta L. Worku ◽  
Q. Najma Karim ◽  
Marjorie M. Walker ◽  
...  

ABSTRACT Helicobacter pylori is a common and persistent human pathogen of the gastric mucosa. Surfactant protein D (SP-D), a component of innate immunity, is expressed in the human gastric mucosa and is capable of aggregating H. pylori. Wide variation in the SP-D binding affinity to H. pylori has been observed in clinical isolates and laboratory-adapted strains. The aim of this study was to reveal potential mechanisms responsible for evading SP-D binding and establishing persistent infection. An escape variant, J178V, was generated in vitro, and the lipopolysaccharide (LPS) structure of the variant was compared to that of the parental strain, J178. The genetic basis for structural variation was explored by sequencing LPS biosynthesis genes. SP-D binding to clinical isolates was demonstrated by fluorescence-activated cell sorter analyses. Here, we show that H. pylori evades SP-D binding through phase variation in lipopolysaccharide. This phenomenon is linked to changes in the fucosylation of the O chain, which was concomitant with slipped-strand mispairing in a poly(C) tract of the fucosyltransferase A (fucT1) gene. SP-D binding organisms are predominant in mucus in vivo (P = 0.02), suggesting that SP-D facilitates physical elimination. Phase variation to evade SP-D contributes to the persistence of this common gastric pathogen.


2012 ◽  
Vol 80 (7) ◽  
pp. 2444-2453 ◽  
Author(s):  
Scarlett Geunes-Boyer ◽  
Michael F. Beers ◽  
John R. Perfect ◽  
Joseph Heitman ◽  
Jo Rae Wright

ABSTRACTConcurrent with the global escalation of the AIDS pandemic, cryptococcal infections are increasing and are of significant medical importance. Furthermore,Cryptococcus neoformanshas become a primary human pathogen, causing infection in seemingly healthy individuals. Although numerous studies have elucidated the virulence properties ofC. neoformans, less is understood regarding lung host immune factors during early stages of fungal infection. Based on our previous studies documenting that pulmonary surfactant protein D (SP-D) protectsC. neoformanscells against macrophage-mediated defense mechanismsin vitro(S. Geunes-Boyer et al., Infect. Immun. 77:2783–2794, 2009), we postulated that SP-D would facilitate fungal infectionin vivo. To test this hypothesis, we examined the role of SP-D in response toC. neoformansusing SP-D−/−mice. Here, we demonstrate that mice lacking SP-D were partially protected duringC. neoformansinfection; they displayed a longer mean time to death and decreased fungal burden at several time points postinfection than wild-type mice. This effect was reversed by the administration of exogenous SP-D. Furthermore, we show that SP-D bound to the surface of the yeast cells and protected the pathogenic microbes against macrophage-mediated defense mechanisms and hydrogen peroxide (H2O2)-induced oxidative stressin vitroandin vivo. These findings indicate thatC. neoformansis capable of coopting host SP-D to increase host susceptibility to the yeast. This study establishes a new paradigm for the role played by SP-D during host responses toC. neoformansand consequently imparts insight into potential future preventive and/or treatment strategies for cryptococcosis.


2005 ◽  
Vol 73 (12) ◽  
pp. 8282-8290 ◽  
Author(s):  
Elena Kostina ◽  
Itzhak Ofek ◽  
Erika Crouch ◽  
Rotem Friedman ◽  
Lea Sirota ◽  
...  

ABSTRACT To better understand the relationship between the surface polysaccharides of pulmonary pathogens and components of the lung innate immune system, we employed selected serotypes of Klebsiella pneumoniae expressing distinct capsular polysaccharides and/or O antigen in a murine model of K. pneumoniae infection. In addition, we examined the effect of surfactant protein D (SP-D) on the cytokine response of human monocyte-derived macrophages to these serotypes in vitro. Noncapsulated mannose-containing O3 serotypes (K50/n and K55/n), which react efficiently with SP-D in vitro, triggered high levels of interleukin-1β (IL-1β) and IL-6 production. In vivo, they were more efficiently cleared from the lungs of mice but not from macrophage-depleted mice. They also were more efficiently internalized by alveolar macrophages in vivo. In contrast, galactose-containing O1 serotypes (K2/n and K21a/n), which interact poorly with SP-D, exhibited significantly lower cytokine production and less efficient pulmonary clearance and were ineffectively internalized by alveolar macrophages. These findings are consistent with in vitro results showing that production of IL-1β and IL-6 mRNA and IL-6 protein by human macrophages exposed to mannose-bearing Klebsiella O serotypes is significantly increased by SP-D. Thus, survival of inhaled bacteria in the lung depends partially on the lipopolysaccharide structure of the bacteria and their interactions with innate immunity components. We speculate that an imbalance of host SP-D and therefore cytokine levels may result in high susceptibility of the host to the pathogen.


2008 ◽  
Vol 412 (2) ◽  
pp. 323-329 ◽  
Author(s):  
Tesfaldet Tecle ◽  
Mitchell R. White ◽  
Grith Sorensen ◽  
Donald Gantz ◽  
Nilgun Kacak ◽  
...  

Collectins are multimeric host defence lectins with trimeric CRDs (carbohydrate-recognition domains) and collagen and N-terminal domains that form higher-order structures composed of four or more trimers. Recombinant trimers composed of only the CRD and adjacent neck domain (termed NCRD) retain binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity. Using a panel of mAbs (monoclonal antibodies) directed against the NCRD in the present study we show that mAbs binding near the lectin site inhibit antiviral activity of full-length SP-D, but mAbs which bind other sites on the CRD do not. Two of the non-blocking mAbs significantly increased binding and antiviral activity of NCRDs as assessed by haemagglutination and neuraminidase inhibition and by viral neutralization. mAb-mediated cross-linking also enabled NCRDs to induce viral aggregation and to increase viral uptake by neutrophils and virus-induced respiratory burst responses by these cells. These results show that antiviral activities of SP-D can be reproduced without the N-terminal and collagen domains and that cross-linking of NCRDs is essential for antiviral activity of SP-D with respect to IAV.


2009 ◽  
Vol 23 (5) ◽  
pp. 1415-1430 ◽  
Author(s):  
Sadis Matalon ◽  
Kedar Shrestha ◽  
Marion Kirk ◽  
Stephanie Waldheuser ◽  
Barbara McDonald ◽  
...  

2019 ◽  
Vol 220 (3) ◽  
pp. 514-523 ◽  
Author(s):  
Juan I Moliva ◽  
Michael A Duncan ◽  
Angélica Olmo-Fontánez ◽  
Anwari Akhter ◽  
Eusondia Arnett ◽  
...  

AbstractAs we age, there is an increased risk for the development of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection. Few studies consider that age-associated changes in the alveolar lining fluid (ALF) may increase susceptibility by altering soluble mediators of innate immunity. We assessed the impact of adult or elderly human ALF during Mtb infection in vitro and in vivo. We identified amplification of pro-oxidative and proinflammatory pathways in elderly ALF and decreased binding capability of surfactant-associated surfactant protein A (SP-A) and surfactant protein D (SP-D) to Mtb. Human macrophages infected with elderly ALF–exposed Mtb had reduced control and fewer phagosome–lysosome fusion events, which was reversed when elderly ALF was replenished with functional SP-A/SP-D. In vivo, exposure to elderly ALF exacerbated Mtb infection in young mice. Our studies demonstrate how the pulmonary environment changes as we age and suggest that Mtb may benefit from declining host defenses in the lung mucosa of the elderly.


2019 ◽  
Vol 317 (5) ◽  
pp. L539-L549 ◽  
Author(s):  
Chang-Jiang Guo ◽  
Elena N. Atochina-Vasserman ◽  
Elena Abramova ◽  
Ley Cody Smith ◽  
Michael F. Beers ◽  
...  

Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


Sign in / Sign up

Export Citation Format

Share Document