scholarly journals Study on the Atomization and Dust-Reduction Performance of a New Type of External Pneumatic Vortex Fog Curtain Dust Removal Device in Fully Mechanized Excavation Face

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Deji Jing ◽  
Rina An ◽  
Jingxu Chen ◽  
Shaocheng Ge ◽  
Liying Sun

To solve the problem of dust pollution in the heading face, a new type of external pneumatic vortex fog curtain dust removal device suitable for a fully mechanized excavation face is designed in this paper. Firstly, dust migration laws at different times are simulated and analyzed by COMSOL software, and the functional relationship of dust concentration distribution above 50 mg/m3 at different heights and different wind speed is derived. Aiming at the dust migration laws of the heading face, a new dust removal device was proposed, and the atomization performance of the new type of external pneumatic vortex fog curtain dust removal device under different jet wind speed, different atomization pressure, and different nozzle working angle is explored through atomization performance experiment. It is found that when jet wind speed is 30 m/s, atomization pressure is 4 MPa, and nozzle working angle is 75°, the atomization performance of the new type of external pneumatic vortex fog curtain dust removal device is the best. Through the simulation of COMSOL software, the influence of air volume on the new type of external pneumatic vortex fog curtain dust removal device is analyzed. It is found that the new type of external pneumatic vortex fog curtain dust removal device is relatively stable when the air volume at the pressure outlet is less than 400 m3/min. The dust-reduction efficiency of the new type of external pneumatic vortex fog curtain dust removal device was investigated through the dust-reduction experiment, and it is found that the new type of external pneumatic vortex fog curtain dust removal device had better dust removal performance under the condition that the ventilation conditions did not interfere with the integrity of the vortex fog curtain.

2021 ◽  
Author(s):  
Changfu Zou

Aiming at the serious problem of dust pollution in blasting work, the dust generation law and dust-bearing air flow time and space evolution law of blasting working face is analyzed and studied, and the optimal dust-exhausting wind speed of blasting work was 1.5 m/s. Combining with the dust production characteristics and wind speed conditions of the 107 blasting face in Dongling Coal Mine, Chongqing, Comprehensive dust prevention measures such as high-efficiency water cannon mud, high-pressure spray dust reduction, and dust concentration over-limit spray dust reduction are adopted to control the dust from the source and cut off the dust diffusion path, and the total dust reduction efficiency reached 94.8%, the respirable dust reduction efficiency reached 92%, and a good dust reduction effect has been achieved, which provides a basic basis for the control of dust in the blast mining work.


2018 ◽  
Vol 61 (6) ◽  
pp. 1907-1914
Author(s):  
Howell B. Gonzales ◽  
John Tatarko ◽  
Mark E. Casada ◽  
Ronaldo G. Maghirang ◽  
Lawrence J. Hagen ◽  
...  

Little is known about the dust removal efficiency of common vegetative barriers. This study of blowing dust reduction was conducted on one of the most common vegetative barriers used for wind erosion control in Kansas and the U.S. Great Plains, the deciduous tree species (Osage orange). A dust generator and distributor were fabricated to generate dust particles for determining the dust removal efficiency of a single-row Osage orange barrier. Simultaneous upwind and downwind dust concentrations were measured using mini-vol samplers for total suspended particulates (TSP) at heights of 1.5, 3.0, 4.5, and 6.0 m above the ground. Measurements were made using two towers located at upwind and downwind distances equal to the height of the barrier. Particle size distribution (PSD) analysis of the initial generated dust showed that most particles were large (GMD = 102.8 µm), while about 5% of the dust was particulate matter less than 2.5 µm in diameter (PM2.5) and 15% was less than 10 µm (PM10). Laser diffraction analysis of particles from the sample filters was used to determine the dust reduction efficiency of the barrier. Results showed that dust reduction was significantly related to reduction in wind speed at lower heights, causing an overall decrease in dust concentration as particles passed through the barrier. Concentrations of larger particles (~100 µm) were also reduced relative to smaller particles when dust passed through the barrier. The data also showed that 4.5 m above the ground, near the crown of the canopy, was most efficient at removing the PM2.5 (15% to 54%) and PM10 (23% to 65%) fractions of the generated dust. Keywords: Generated dust, Osage orange, PM2.5, PM10, TSP, Wind erosion.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hua Guo ◽  
Haiqiao Wang ◽  
Zhirong Wu

To reduce the dedusting resistance of wet vibrating string grille precipitators during dedusting in mine ventilation roadways, we investigated the dedusting resistance characteristics of water fog and water film coupling and determined the relationship between dedusting resistance and spray pressure, vibrating grid filling rate, and wind speed. A mathematical resistance coefficient model is established using hydrodynamics theory and capillary mechanics. The theoretical relationship of dedusting resistance is deduced. The results show that when wind speed is constant, the spray pressure and dedusting resistance are higher and the resistance is smaller with a high filling rate compared with a low filling rate. Constant spray pressure allows faster wind speeds and reverse pressure gradient forces to increase when dust flows around the wet vibrating wire, which makes the pressure distribution asymmetrical around the steel wire and increases resistance. Dust removal resistance of the resonance chord with a high filling rate is substantially lower than that with a low filling rate under the same working conditions. On the basis of satisfying the dedusting efficiency, the resonance chord dedusting system does not affect normal production and resistance is low. The spray pressure is controlled at 0.3–0.7 MPa and the optimal wind speed is 3–4 m/s. According to the theoretical calculation and experimental data, the optimal filling rate of a vibrating string grid plate is 77.8%, spray pressure is 0.7 MPa, and wind speed is 3.5 m/s. Dust removal with low resistance and improved economic benefit can thus be obtained.


Author(s):  
J. N. Carruthers

In July–August of three different years common surface-floating bottles were set adrift at International Station E2 (49° 27' N.—4° 42' W.). With them, various types of drag-fitted bottles were also put out. The journeys accomplished are discussed, and the striking differences as between year and year in the case of the common surface floaters, and as between the different types in the same year, are commented upon in the light of the prevailing winds. An inter-relationship of great simplicity is deduced between wind speed and the rate of travel of simple surface floating bottles up-Channel and across the North Sea from the results of experiments carried out in four different summers.


2014 ◽  
Vol 556-562 ◽  
pp. 1408-1412
Author(s):  
Zhi Qiang Zhang

In this paper, the following work is done: a new type of translational transmission device is designed; explained in detail are the operating principle, structural features, relationship of mechanism parameter and non interference conditions of the movement; the optimization analysis of transmission device is implemented on the basis of non interference conditions of the bucket movement; structural modeling and simulation analysis are carried out by utilization of Pro/e & Recurdyn; and based on virtual prototype technology, the new type of translational transmission device is verified by experiments, the data of which prove the translational transmission device reasonable and practicable. In conclusion, this paper has laid the theoretical foundation of the practical application of the translational transmission device.


Author(s):  
Lynda Avendaño Santana

Lateral learning in the last two decades can be seen in peer-to-peer learning that is being promoted by new technologies where there are apps that allow students to work together in real time through virtual space, a method which thereby shifts the focus from the solitary self to the interdependent group which lives an educational experience of a collaborative and distributed nature, whose focus lies in instilling the principle of the social nature of knowledge. The ideological bases of lateral thinking are sustained by issues such as emancipation of the student from the authority of the teacher, the relationship of collaboration, permitting the development of individual appreciations and ideas, based simultaneously on those of their peers, on the democratization of knowledge, and so on, which ultimately refers to a collaborative creative education, to a democratic education, and to an education for democracy that assumes the new technologized context in which we live. Because of this, lateral thinking is increasingly influencing everyday life and areas such as education and the arts, as it happens in the post-Internet art, and more specifically net.art (i.e., an online art), which is a collaborative creative experience that has become an instrument which allows us to see a “new type of art in the 21st century.” Net.art, Internet art and the most experimental design, therefore constitutes a community experience that hypertextualizes computerized languages and generates poetic perspectives as artistic practices of lateral thinking. It has bestowed upon us a series of mechanisms to devise collaborative development strategies for lateral learning based on those creative ludic educational experiences of using and interacting with new technologies. This is essential to bear in mind because, as Jeremy Rifkin says, collaborative learning helps students to expand their own self-awareness, including their “self” in reference to diverse “others,” and promotes in-depth participation in more interdependent communities. It extends the territory comprised within the boundaries of empathy.


1986 ◽  
Vol 43 ◽  
pp. 127-138 ◽  
Author(s):  
Geoffrey E. Hill

Abstract This article is a review of work on the subject of seedability of winter orographic clouds for increasing precipitation. Various aspects of seedability are examined in the review, including definitions, distribution of supercooled liquid water, related meteorological factors, relationship of supercooled liquid water to storm stage, factors governing seedability, and the use of seeding criteria. Of particular interest is the conclusion that seedability is greatest when supercooled liquid water concentrations are large and at the same time precipitation rates are small. Such a combination of conditions is favored if the cloud-top temperature is warmer than a limiting value and as the cross-barrier wind speed at mountaintop levels increases. It is also suggested that cloud seeding is best initiated in accordance with direct measurements of supercooled liquid water, precipitation, and cross-barrier wind speed. However, in forecasting these conditions or in continuation of seeding previously initiated, the cloud-top temperature and cross-barrier wind speed are the most useful quantities.


2018 ◽  
Vol 122 (1249) ◽  
pp. 349-368
Author(s):  
F. Gao ◽  
J. G. Lv ◽  
X. C. Zhang

ABSTRACTThis article describes the design and evaluation of a new type of propulsion mechanism that uses modular umbrella-like wings oscillating symmetrically in counterphase to generate thrust. The principle of the propulsion and movement of the modular umbrella-like wings was first developed, and the mechanism used to implement the movement of the modular wings was subsequently designed. A structural model and the assembly relationship of the propulsion mechanism were developed for prototype fabrication. An experiment was established to measure the kinematic and mechanical performances of the propulsion mechanism for different reciprocating frequencies and travels. The results for the single umbrella-like wing indicate that either increasing the frequency or enlarging the travel can enhance the average aerodynamic force generated by the wing in one cycle. The results for the modular umbrella-like wings demonstrate that the inertial force generated by the mechanism can be balanced using a symmetrical structure. The average aerodynamic force would be markedly enhanced by increasing the percentage of the time that the outspread wing is moving downwards; e.g. the average aerodynamic force generated by the modular umbrella-like wings was increased by 85.84% compared to the value for a single umbrella-like wing for the same travel and frequency. This work provides practical guidance for optimising the structure design.


Sign in / Sign up

Export Citation Format

Share Document