scholarly journals Phosphorylated Alpha-Synuclein in Red Blood Cells as a Potential Diagnostic Biomarker for Multiple System Atrophy: A Pilot Study

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xu-Ying Li ◽  
Weiwei Yang ◽  
Xin Li ◽  
Xu-Ran Li ◽  
Wei Li ◽  
...  

Diagnosis of multiple system atrophy (MSA) remains a challenge, due to the complexity and overlapping of its symptoms with other Parkinsonian disorders. The critical role of alpha-synuclein (α-syn) in the pathogenesis of MSA makes it an ideal biomarker for the diagnosis of MSA. Although α-syn alterations in cerebrospinal fluid (CSF) and blood plasma have been extensively assessed for the utility in diagnosing MSA, inconsistent results have been obtained, presumably due to the contamination by hemolysis and other confounding factors. In this study, levels of serine 129-phosphorylated α-syn (pS-α-syn), a major pathologic form of α-syn, in red blood cells (RBCs), were measured using ELISA in a Chinese cohort consisting of 107 MSA patients and 220 healthy controls. A significant increase in the levels of pS-α-syn in RBCs (pS-α-syn-RBC) was observed in MSA patients than in healthy controls (14.02 ± 4.02 ng/mg versus 11.89 ± 3.57 ng/mg; p<0.0001). Receiver operating characteristic curve (ROC) indicated that pS-α-syn-RBC discriminated the patients well from the controls with a sensitivity of 80.37% (95% confidence interval (CI): 71.58%–87.42%), a specificity of 88.64% (95% CI: 83.68%–92.51%), and an area under the curve (AUC) of 0.91 (95% CI: 0.87–0.94). The levels of pS-α-syn-RBC were negatively correlated with RBD-HK scores and differed between MSA-P and MSA-C subtypes (13.27 ± 1.91 versus 12.19 ± 3.04; p=0.025). The difference between subtypes was seen at Hoehn and Yahr stages 3 and 4, and the age at onset (AAO) between 60 and 69 years (p=0.016). The results suggest that pS-α-syn-RBC is increased in MSA patients and can be used as a potential diagnostic biomarker for MSA.

Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1247
Author(s):  
Anne Worthington ◽  
Alise Kalteniece ◽  
Maryam Ferdousi ◽  
Luca Donofrio ◽  
Shaishav Dhage ◽  
...  

Impaired rate-dependent depression of the Hoffman reflex (HRDD) is a potential biomarker of impaired spinal inhibition in patients with painful diabetic neuropathy. However, the optimum stimulus-response parameters that identify patients with spinal disinhibition are currently unknown. We systematically compared HRDD, performed using trains of 10 stimuli at five stimulation frequencies (0.3, 0.5, 1, 2 and 3 Hz), in 42 subjects with painful and 62 subjects with painless diabetic neuropathy with comparable neuropathy severity, and 34 healthy controls. HRDD was calculated using individual and mean responses compared to the initial response. At stimulation frequencies of 1, 2 and 3 Hz, HRDD was significantly impaired in patients with painful diabetic neuropathy compared to patients with painless diabetic neuropathy for all parameters and for most parameters when compared to healthy controls. HRDD was significantly enhanced in patients with painless diabetic neuropathy compared to controls for responses towards the end of the 1 Hz stimulation train. Receiver operating characteristic curve analysis in patients with and without pain showed that the area under the curve was greatest for response averages of stimuli 2–4 and 2–5 at 1 Hz, AUC = 0.84 (95%CI 0.76–0.92). Trains of 5 stimuli delivered at 1 Hz can segregate patients with painful diabetic neuropathy and spinal disinhibition, whereas longer stimulus trains are required to segregate patients with painless diabetic neuropathy and enhanced spinal inhibition.


2021 ◽  
Vol 43 (1) ◽  
pp. 324-334
Author(s):  
Francisco J. Julián-Villaverde ◽  
Laura Ochoa-Callejero ◽  
Eva Siles ◽  
Esther Martínez-Lara ◽  
Alfredo Martínez

Hemorrhagic stroke remains an important health challenge. Adrenomedullin (AM) is a vasoactive peptide with an important role in cardiovascular diseases, including stroke. Serum AM and nitrate–nitrite and S-nitroso compounds (NOx) levels were measured and compared between healthy volunteers (n = 50) and acute hemorrhagic stroke patients (n = 64). Blood samples were taken at admission (d0), 24 h later (d1), and after 7 days or at the time of hospital discharge (d7). Neurological severity (NIHSS) and functional prognosis (mRankin) were measured as clinical outcomes. AM levels were higher in stroke patients at all times when compared with healthy controls (p < 0.0001). A receiving operating characteristic curve analysis identified that AM levels at admission > 69.0 pg/mL had a great value as a diagnostic biomarker (area under the curve = 0.89, sensitivity = 80.0%, specificity = 100%). Furthermore, patients with a favorable outcome (NIHSS ≤ 3; mRankin ≤ 2) experienced an increase in AM levels from d0 to d1, and a decrease from d1 to d7, whereas patients with unfavorable outcome had no significant changes over time. NOx levels were lower in patients at d0 (p = 0.04) and d1 (p < 0.001) than in healthy controls. In conclusion, AM levels may constitute a new diagnostic and prognostic biomarker for this disease, and identify AM as a positive mediator for hemorrhagic stroke resolution.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1493-1502 ◽  
Author(s):  
Mondira Kundu ◽  
Tullia Lindsten ◽  
Chia-Ying Yang ◽  
Junmin Wu ◽  
Fangping Zhao ◽  
...  

Abstract Production of a red blood cell's hemoglobin depends on mitochondrial heme synthesis. However, mature red blood cells are devoid of mitochondria and rely on glycolysis for ATP production. The molecular basis for the selective elimination of mitochondria from mature red blood cells remains controversial. Recent evidence suggests that clearance of both mitochondria and ribosomes, which occurs in reticulocytes following nuclear extrusion, depends on autophagy. Here, we demonstrate that Ulk1, a serine threonine kinase with homology to yeast atg1p, is a critical regulator of mitochondrial and ribosomal clearance during the final stages of erythroid maturation. However, in contrast to the core autophagy genes such as atg5 and atg7, expression of ulk1 is not essential for induction of macroautophagy in response to nutrient deprivation or for survival of newborn mice. Together, these data suggest that the ATG1 homologue, Ulk1, is a component of the selective autophagy machinery that leads to the elimination of organelles in erythroid cells rather that an essential mechanistic component of autophagy.


2018 ◽  
Vol 105 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Stefano Signoroni ◽  
Maria Grazia Tibiletti ◽  
Maria Teresa Ricci ◽  
Massimo Milione ◽  
Federica Perrone ◽  
...  

Objective: To investigate the performance of tumor testing approaches in the identification of Lynch syndrome (LS) in a single-center cohort of people with colorectal cancer (CRC). Methods: A retrospective analysis of data stored in a dedicated database was carried out to identify patients with CRC suspected for LS who were referred to Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy, between 1999 and 2014. The sensitivity and specificity of immunohistochemistry (IHC) for mismatch repair (MMR) proteins and microsatellite instability (MSI) analysis (alone or combined) were calculated with respect to the presence of causative MMR germline variants. Results: A total of 683 patients with CRC suspected for LS were identified. IHC results of MMR protein analysis and MSI were assessed in 593 and 525 CRCs, respectively, while germline analysis was performed in 418 patients based on the IHC or MSI test result and/or clinical features. Univariate and multivariate analysis revealed a significant correlation of pathogenic MMR germline variants with all clinicopathologic features including Amsterdam criteria, presence of endometrial cancer, CRC site, age at onset, stage, and grade. The highest odds ratio values were observed for IHC and MSI (17.1 and 8.8, respectively). The receiver operating characteristic curve and area under the curve values demonstrated that IHC alone or combined with other clinicopathologic parameters was an excellent test for LS identification. Conclusions: This study confirms the effectiveness of tumor testing to identify LS among patients with CRC. Although IHC and MSI analysis were similarly effective, IHC could be a better strategy for LS identification as it is less expensive and more feasible.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 764-764
Author(s):  
Abdoul Karim Dembele ◽  
Patricia Hermand-Tournamille ◽  
Florence Missud ◽  
Emmanuelle Lesprit ◽  
Malika Benkerrou ◽  
...  

Abstract Sickle cell disease (SCD) is a severe hemoglobinopathy due to abnormal hemoglobin S (HbS). Although red blood cell dysfunction is at the core of the SCD pathophysiology, several studies have highlighted the important role of inflammatory cells like neutrophils. One of the most serious complications of SCD is cerebral vasculopathy (CV), due to the occlusion of one or more intracranial or cervical arteries. In 1998, the STOP study demonstrated that monthly blood transfusions could reduce the risk of stroke by 90% in children with CV. However, there is large heterogeneity in the evolution of CV under chronic transfusion, sometimes requiring exchange transfusion (ET) program for years without succeeding in healing the CV. The aim of the study is to investigate the impact of long-term transfusion program on neutrophil dysfunction, in order to understand if persistent inflammation could contribute to the non-healing of CV despite HbS permanently below 40%. In SCD children undergoing ET program for at least 1 year, we analysed i)the phenotype of neutrophils with 8 markers of activation/adhesion/ageing, ii)the plasmatic levels of elastase, witnessing the NETose activity of neutrophils, and iii)the ex-vivo adhesion of neutrophils on activated endothelial cells. One hundred and two SCD children with an ET transfusion program for at least 6 months because of CV were included in the study. ET session, carried out every 5 weeks and most of the time by erythrapheresis, reached their biological objectives with a mean HbS rate after ET session of 14.1%, and 35.4% before the next ET session, which means that these patients globally live at an average HbS level of 24% for at least 1 year. We managed to limit iron overload with a mean ferritinemia of 207 µg/L in the whole cohort. Despite these satisfactory results in terms of HbS reduction, the efficiency in curing the CV was modest in accordance with the previously described efficiency of ET program in SCD children: after a mean ET program duration of 4.4 years only 22% of them had an improvement of their CV since the beginning of the ET program, while 60% of them had a stagnation of their CV, and 18% of them worsened their vascular lesions. Considering inflammatory parameters, the patients had persistence of high leukocytosis and high neutrophils count (respective mean of 9810 G/L and 5742 G/L), significantly not different of neutrophils count before inclusion in the ET program. In a random subgroup of 20 patients, we analysed neutrophils phenotype, NETose and endothelial adhesion and compared them to healthy controls and SCD children without ET, treated or not with Hydroxyurea (HU). Overall, we observed as expected an activated, aged and adherent profile of neutrophils from untreated SCD children compared to healthy controls, characterized by an overexpression of CD18/CD11b (p=0,03), CD18/CD11a (p=0,02), CD162 (p=0,01), CD66a (p=0,01) and the ageing markers CD184 high/CD62Llow (p=0,04) as well as a higher plasmatic level of elastase (p=0. 01) and higher adhesion of neutrophils to endothelial cells. All these parameters were alleviated in SCD patients treated with HU. In SCD patient undergoing ET program, we found a similar profile of activated neutrophils to that of untreated SCD patients with a similar expression of activation molecules, high level of elastase and the same increase of neutrophils adhesion to endothelial cells compared to controls, witnessing a persistence of chronic inflammation despites years of ET. Overall, our study highlights that the replacement of sickle red blood cells, even for years, is not sufficient to reverse the deleterious inflammatory phenotype of neutrophils. Given the major role of inflammation in endothelial dysfunction, these could contribute to the persistence of CV in a majority of patients despite efficient ET programs. This raises the question of systematically combining ET program with anti-inflammatory treatment such as HU or P-selectin inhibitors in children with CV. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xu-Ying Li ◽  
Wei Li ◽  
Xin Li ◽  
Xu-Ran Li ◽  
Linjuan Sun ◽  
...  

Serine 129-phosphorylated alpha-synuclein (pS-α-syn) is a major form of α-syn relevant to the pathogenesis of Parkinson's disease (PD), which has been recently detected in red blood cells (RBCs). However, alterations of RBC-derived pS-α-syn (pS-α-syn-RBC) in different subtypes and stages of PD remains to be investigated. In the present study, by using enzyme-linked immunosorbent assay (ELISA) to measure pS-α-syn-RBC, we demonstrated significantly higher levels of pS-α-syn-RBC in PD patients than in healthy controls. pS-α-syn-RBC separated the patients well from the controls, with a sensitivity of 93.39% (95% CI: 90.17–95.81%), a specificity of 93.11% (95% CI: 89.85–95.58%), and an area under the curve (AUC) of 0.96. Considering motor subtypes, the levels of pS-α-syn-RBC were significantly higher in late-onset than young-onset PD (p = 0.013) and in those with postural instability and gait difficulty than with tremor-dominant (TD) phenotype (p = 0.029). In addition, the levels of pS-α-syn-RBC were also different in non-motor subtypes, which were significantly lower in patients with cognitive impairment (p = 0.012) and olfactory loss (p = 0.004) than in those without such symptoms. Moreover, the levels of pS-α-syn-RBC in PD patients were positively correlated with disease duration and Hoehn &amp; Yahr stages (H&amp;Y) (p for trend =0.02 and &lt;0.001) as well as UPDRS III (R2 = 0.031, p = 0.0042) and MoCA scores (R2 = 0.048, p = 0.0004). The results obtained suggest that pS-α-syn-RBC can be used as a potential biomarker for not only separating PD patients from healthy controls but also predicting the subtypes and stages of PD.


2021 ◽  
Vol 16 (1) ◽  
pp. 1365-1376
Author(s):  
Yiping Cheng ◽  
Wenhao Yu ◽  
Yuping Zhou ◽  
Tao Zhang ◽  
Haiyan Chi ◽  
...  

Abstract The role of inflammation has been identified in the pathogenesis of diabetic ketoacidosis (DKA). The neutrophil/lymphocyte ratio (NLR) and white blood cells (WBC) can be used to predict a systemic inflammatory response. Changes in NLR and WBC levels have never been explored in type 1 diabetes mellitus (T1DM) patients with DKA and an uninfected state. This retrospective study included a total of 644 participants. NLR and WBC were measured in the control group (n = 316) and in T1DM patients with mild-DKA (n = 92), severe-DKA (n = 52), and non-DKA (n = 184) in an uninfected state. Then, we assessed the independent predictors of DKA occurrence in T1DM patients in an uninfected state. The diagnostic performance of variables was determined by receiver operating characteristic curve analysis. Serum NLR of T1DM patients is significantly higher than that of normal controls, and if DKA occurs, NLR increases further and increases with the severity of DKA. In addition to diastolic blood pressure, blood urea nitrogen, glycated hemoglobin (HbA1c), and WBC, NLR was also independently associated with DKA in T1DM patients with an uninfected state (OR = 1.386, 95% CI: 1.127–1.705, p = 0.002). Furthermore, the diagnosis analysis showed that except for NLR and WBC, the area under the curve (AUC) of indicators with a statistical difference in patients with and without DKA were 0.747 for DKA diagnosis, and after the addition of NLR and WBC, the AUC was 0.806. The increased NLR level represents a low-cost and highly accessible predictor for DKA in T1DM patients with an uninfected state. The addition of inflammation indicators can play a statistically significant role in the prediction model of the DKA occurrence.


2017 ◽  
Vol 1 (17) ◽  
pp. 1296-1305 ◽  
Author(s):  
Julie A. Reisz ◽  
Anne L. Slaughter ◽  
Rachel Culp-Hill ◽  
Ernest E. Moore ◽  
Christopher C. Silliman ◽  
...  

Abstract Red blood cells (RBCs) are the most abundant host cell in the human body and play a critical role in oxygen transport and systemic metabolic homeostasis. Hypoxic metabolic reprogramming of RBCs in response to high-altitude hypoxia or anaerobic storage in the blood bank has been extensively described. However, little is known about the RBC metabolism following hemorrhagic shock (HS), the most common preventable cause of death in trauma, the global leading cause of total life-years lost. Metabolomics analyses were performed through ultra-high pressure liquid chromatography–mass spectrometry on RBCs from Sprague-Dawley rats undergoing HS (mean arterial pressure [MAP], &lt;30 mm Hg) in comparison with sham rats (MAP, &gt;80 mm Hg). Steady-state measurements were accompanied by metabolic flux analysis upon tracing of in vivo–injected 13C15N-glutamine or inhibition of glutaminolysis using the anticancer drug CB-839. RBC metabolic phenotypes recapitulated the systemic metabolic reprogramming observed in plasma from the same rodent model. Results indicate that shock RBCs rely on glutamine to fuel glutathione (GSH) synthesis and pyruvate transamination, whereas abrogation of glutaminolysis conferred early mortality and exacerbated lactic acidosis and systemic accumulation of succinate, a predictor of mortality in the military and civilian critically ill populations. Glutamine is here identified as an essential amine group donor in HS RBCs, plasma, liver, and lungs, providing additional rationale for the central role glutaminolysis plays in metabolic reprogramming and survival following severe hemorrhage.


2019 ◽  
Vol 28 (4) ◽  
pp. 361-366
Author(s):  
Lama Al-Faris ◽  
Salah Al-Humood

Objective: Red blood cells (RBCs) in storage undergo structural and biochemical changes that may cause functional effects. Studies exploring structural changes affecting the expression levels of CD55 and CD59 on RBCs are limited. The aim of this study was to investigate the pattern of CD55 and CD59 expression on RBCs in stored blood from Arab donors. Materials and Methods: Flow-cytometric analysis was performed on RBCs from 92 packed RBC (PRBC) units, stored for varying times, and from 56 nonstored RBC from healthy controls using the commercial REDQUANT kit. Results: The proportions of CD55- and CD59-deficient RBCs from stored PRBC units did not significantly differ when compared with those from healthy controls; however, the mean fluorescent intensity (MFI) of CD59 expression, but not MFI of CD55 expression, on RBCs from stored PRBC units was significantly reduced when compared to the expression of RBCs from healthy controls (p = 0.02). MFI of CD55 expression on RBCs from PRBC units did not significantly differ among the 3 groups of stored RBC; however, there was a statistically significant time-dependent preferential decline in MFI of CD59 expression on RBCs from stored PRBC units (p < 0.01). Conclusion: There is a preferential time-dependent decline in the expression of CD59, but not of CD55, on stored RBCs, the in vivo significance of which in relation to the response to PRBC transfusion needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document