scholarly journals Inverse Percolation to Quantify Robustness in Multiplex Networks

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Edwin Montes-Orozco ◽  
Roman-Anselmo Mora-Gutiérrez ◽  
Bibiana Obregón-Quintana ◽  
Sergio-G. de-los-Cobos-Silva ◽  
Eric A. Rincón-García ◽  
...  

Inverse percolation is known as the problem of finding the minimum set of nodes whose elimination of their links causes the rupture of the network. Inverse percolation has been widely used in various studies of single-layer networks. However, the use and generalization of multiplex networks have been little considered. In this work, we propose a methodology based on inverse percolation to quantify the robustness of multiplex networks. Specifically, we present a modified version of the mathematical model for the multiplex-vertex separator problem (m-VSP). By solving the m-VSP, we can find nodes that cause the rupture of the mutually connected giant component (MCGC) and the large viable cluster (LVC) when their links are removed from the network. The methodology presented in this work was tested in a set of benchmark networks, and as case study, we present an analysis using a set of multiplex social networks modeled with information about the main characteristics of the best universities in the world and the universities in Mexico. The results show that the methodology presented in this work can work in different models and types of 2- and 3-layer multiplex networks without dividing the entire multiplex network into single-layer as some techniques described in the specific literature. Furthermore, thanks to the fact that the technique does not require the calculation of some structural measure or centrality metric, and it is easy to scale for networks of different sizes.

2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


2017 ◽  
Vol 28 (08) ◽  
pp. 1750101 ◽  
Author(s):  
Yabing Yao ◽  
Ruisheng Zhang ◽  
Fan Yang ◽  
Yongna Yuan ◽  
Qingshuang Sun ◽  
...  

In complex networks, the existing link prediction methods primarily focus on the internal structural information derived from single-layer networks. However, the role of interlayer information is hardly recognized in multiplex networks, which provide more diverse structural features than single-layer networks. Actually, the structural properties and functions of one layer can affect that of other layers in multiplex networks. In this paper, the effect of interlayer structural properties on the link prediction performance is investigated in multiplex networks. By utilizing the intralayer and interlayer information, we propose a novel “Node Similarity Index” based on “Layer Relevance” (NSILR) of multiplex network for link prediction. The performance of NSILR index is validated on each layer of seven multiplex networks in real-world systems. Experimental results show that the NSILR index can significantly improve the prediction performance compared with the traditional methods, which only consider the intralayer information. Furthermore, the more relevant the layers are, the higher the performance is enhanced.


Author(s):  
Sandesh Mahamure ◽  
Poonam N. Railkar ◽  
Parikshit N. Mahalle

Now we are in the era of ubiquitous computing. Internet of things (IoT) is getting matured in various parts of the world. In coming few years' billions and trillions of things will be connected to the internet. To deal with these huge number of devices in a network we need to consider Quality of Service (QoS)parameters so that system operations can be performed in a smoother way. Mathematical modelling of these QoS parameters gives an idea about which factors are needs to consider while designing any IoT-enabled system at the same time it will give the performance analysis of the system before implementation. In this paper comprehensive literature survey is done to discuss various issues related to QoS and gap analysis is also done for IoT Enabled systems. This paper proposes general steps to build a mathematical model for a system. It also proposes the mathematical model for QoS parameters like reliability, communication complexities, latency and aggregation of data for IoT. To support proposed mathematical model proof of concept also given.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050062
Author(s):  
João Angelo Ferres Brogin ◽  
Jean Faber ◽  
Douglas Domingues Bueno

Epilepsy affects about 70 million people in the world. Every year, approximately 2.4 million people are diagnosed with epilepsy, two-thirds of them will not know the etiology of their disease, and 1% of these individuals will decease as a consequence of it. Due to the inherent complexity of predicting and explaining it, the mathematical model Epileptor was recently developed to reproduce seizure-like events, also providing insights to improve the understanding of the neural dynamics in the interictal and ictal periods, although the physics behind each parameter and variable of the model is not fully established in the literature. This paper introduces an approach to design a feedback-based controller for suppressing epileptic seizures described by Epileptor. Our work establishes how the nonlinear dynamics of this disorder can be written in terms of a combination of linear sub-models employing an exact solution. Additionally, we show how a feedback control gain can be computed to suppress seizures, as well as how specific shapes applied as input stimuli for this purpose can be obtained. The practical application of the approach is discussed and the results show that the proposed technique is promising for developing controllers in this field.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1343 ◽  
Author(s):  
Tudor Deaconescu ◽  
Andrea Deaconescu

Lapping is a finishing process where loose abrasive grains contained in a slurry are pressed against a workpiece to reduce its surface roughness. To perform a lapping operation, the user needs to set the values of the respective lapping conditions (e.g., pressure, depth of cut, the rotational speed of the pressing lap plate, and alike) based on some material properties of the workpiece, abrasive grains, and slurry, as well as on the desired surface roughness. Therefore, a mathematical model is needed that establishes the relationships among the abovementioned parameters. The mathematical model can be used to develop a lapping operation optimization system, as well. To this date, such a model and system are not available mainly because the relationships among lapping conditions, material properties of abrasive grains and slurry, and surface roughness are difficult to establish. This study solves this problem. It presents a mathematical model establishing the required relationships. It also presents a system developed based on the mathematical model. In addition, the efficacy of the system is also shown using a case study. This study thus helps systematize lapping operations in regard to real-world applications.


2010 ◽  
Vol 171-172 ◽  
pp. 644-647
Author(s):  
Shao Qiang Yuan ◽  
Xin Xin Li

Bent-arm PenduBot is more similar to human arm, which attaches more and more robot experts’ attention around the world. As the foundation of the multi-link PenduBot control, the mathematical model should be established first. Based on the method of kinematics and dynamics, the N-link bent-arm PenduBot mathematical models are established in this paper, including the nonlinear model and the linear model. The natural characteristics of different pendulum are analyzed. By using the condition number of the controllability matrix, the control difficulty for higher order systems is compared.


2010 ◽  
Vol 171-172 ◽  
pp. 205-210
Author(s):  
Tong Zhao ◽  
Hou Ming Fan ◽  
Gui Lin Wang

In the world today, science and technology in natural disasters forecasting is changing with each passing day and is built up to a rather high level. But local, territorial, even just national or worldwide scope natural disasters have also posed a grave menace to human well-being and development. Therefore, researching on optimizing problem of vehicle routing for emergent relief supplies of multi-reserves, it is vital significant to quickly send relief supplies to the sufferers after sudden natural disasters. Then, we draw out the mathematical model and solve the problem reasonably based on the improved ant colony algorithm, at last, we obtain the satisfy results through an empirical exemple.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Nicolò Musmeci ◽  
Vincenzo Nicosia ◽  
Tomaso Aste ◽  
Tiziana Di Matteo ◽  
Vito Latora

We propose here a multiplex network approach to investigate simultaneously different types of dependency in complex datasets. In particular, we consider multiplex networks made of four layers corresponding, respectively, to linear, nonlinear, tail, and partial correlations among a set of financial time series. We construct the sparse graph on each layer using a standard network filtering procedure, and we then analyse the structural properties of the obtained multiplex networks. The study of the time evolution of the multiplex constructed from financial data uncovers important changes in intrinsically multiplex properties of the network, and such changes are associated with periods of financial stress. We observe that some features are unique to the multiplex structure and would not be visible otherwise by the separate analysis of the single-layer networks corresponding to each dependency measure.


2018 ◽  
Vol 3 (9) ◽  
pp. 39
Author(s):  
Grit Ngowtanasuwan

This article presents a method for solving decision in building plan design by using a mathematical model (nonlinear programming). First objective is to formulate mathematical models for analysis in dividing rooms and dimensions in a building plan. Secondly, to calculate the dimensions and room sizes which have minimum construction cost. A case study of a condominium building plan was analyzed in this research. The results found application of the mathematical model was applicable. The mathematical models were formulated, the minimum construction cost was ฿723,000 (US$24,100) and usable area in the condominium was 67.5 m2 and followed the assigned design constraints.Keywords: Building plan design; Mathematical model; Unit cost;eISSN 2398-4295 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI:


Sign in / Sign up

Export Citation Format

Share Document