scholarly journals Application of an Estimation Method in the Lure System

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhaoxia Huang

The presence of set-valued mapping affects the stability of the output of the lure system, adding to the difficulty in observer design. To overcome the difficulty, the author mapped the system output error to the nonlinear term of the framer, creating a framer of the extended Luenberger structure, and analyzed the coordination of the error system by the monotonic system theory. On this basis, the interval observer was designed for the lure system. Then, the lure system and its observer systems were proved as asymptotically stable. Finally, it is proved that the observer system trajectory always followed the original state trajectory through the simulation under the different selections of set-valued mapping.

2018 ◽  
Vol 40 (15) ◽  
pp. 4166-4174 ◽  
Author(s):  
Chengcheng Song ◽  
Haoping Wang ◽  
Yang Tian

This paper proposes an event-triggered piecewise-continuous observer (E-PCO) that can estimate continuous-time undelayed system state using event-triggered (aperiodic) sampled and delayed system output that is received from network. The key point of this estimation method is the design of three reconstructions and an event-triggered reduced-order discrete-time Luenberger observer (E-RODL-O). First, Reconstruction I compensates for the effects of event-triggered sampling. Based on Reconstruction I, the E-RODL-O is designed for obtaining a periodic sampled delayed system state. Then, Reconstruction II makes up for the influences of time delays, which brings the periodic sampled undelayed system state. Based on this, Reconstruction III finally calculates the continuous-time undelayed system state. Through some parameters selections, the stability of E-PCO system is guaranteed. The theoretical design is applied to a networked visual servoing mobile cart system for verifying its validity.


Author(s):  
Sara Dadras ◽  
Hamid Reza Momeni

In this paper, a class of fractional order systems is considered and simple fractional order observers have been proposed to estimate the system’s state variables. By introducing a fractional calculus into the observer design, the developed fractional order observers guarantee the estimated states reach the original system states. Using the fractional order Lyapunov approach, the stability (zero convergence) of the error system is investigated. Finally, the simulation results demonstrate validity and effectiveness of the proposed scheme.


Author(s):  
Nacim Meslem

To estimate validated bounds on the actual state vector of uncertain non-linear systems, cooperative output injections methods are proposed in this contribution. The aim of the output injections is to design set-membership state estimators that ensure the order-preserving property between the lower, actual and upper state trajectories. Based on a special sensors placement, continuous-time and event-triggered output injections are proposed to cope with the conservatism of the classical bounding system methods. Furthermore, based on some properties of monotone dynamical systems, the convergence of the proposed set-membership state estimators is shown. It is worth pointing out that the proposed set-membership state estimation method allows one: on one hand, to avoid the conservatism related to the use of similarity transformations usually required in the framework of interval observer design approaches, and on the other hand, to circumvent the pessimism accumulation related to the wrapping effect of set-valued iterative numerical schemes.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


Author(s):  
Zakarya Omar ◽  
Xingsong Wang ◽  
Khalid Hussain ◽  
Mingxing Yang

AbstractThe typical power-assisted hip exoskeleton utilizes rotary electrohydraulic actuator to carry out strength augmentation required by many tasks such as running, lifting loads and climbing up. Nevertheless, it is difficult to precisely control it due to the inherent nonlinearity and the large dead time occurring in the output. The presence of large dead time fires undesired fluctuation in the system output. Furthermore, the risk of damaging the mechanical parts of the actuator increases as these high-frequency underdamped oscillations surpass the natural frequency of the system. In addition, system closed-loop performance is degraded and the stability of the system is unenviably affected. In this work, a Sliding Mode Controller enhanced by a Smith predictor (SMC-SP) scheme that counts for the output delay and the inherent parameter nonlinearities is presented. SMC is utilized for its robustness against the uncertainty and nonlinearity of the servo system parameters whereas the Smith predictor alleviates the dead time of the system’s states. Experimental results show smoother response of the proposed scheme regardless of the amount of the existing dead time. The response trajectories of the proposed SMC-SP versus other control methods were compared for a different predefined dead time.


Author(s):  
Wei Yue ◽  
Cong-zhi Liu ◽  
Liang Li ◽  
Xiang Chen ◽  
Fahad Muhammad

This work is focused on designing a fractional-order [Formula: see text] observer and applying it into the state of charge (SOC) estimation for lithium-ion battery pack system. Firstly, a fractional order equivalent circuit model based on the fractional capacitor is established and identified. Secondly, the SOC estimation method based on the fractional-order [Formula: see text] observer is proposed. The nonlinear intrinsic relationship between the open-circuit voltage and SOC is described as a polynomial function, and its Lipschitz proposition has been discussed. Then, the nonlinear observer design criterion is established based on the Lyapunov method. Finally, the effectiveness of the proposed method is verified with high accuracy and robustness by the experiment results.


2020 ◽  
Vol 53 (2) ◽  
pp. 3683-3688
Author(s):  
Erik Hildebrandt ◽  
Julia Kersten ◽  
Andreas Rauh ◽  
Harald Aschemann

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Wonhee Kim ◽  
Sangmin Suh

For several decades, disturbance observers (DOs) have been widely utilized to enhance tracking performance by reducing external disturbances in different industrial applications. However, although a DO is a verified control structure, a conventional DO does not guarantee stability. This paper proposes a stability-guaranteed design method, while maintaining the DO structure. The proposed design method uses a linear matrix inequality (LMI)-based H∞ control because the LMI-based control guarantees the stability of closed loop systems. However, applying the DO design to the LMI framework is not trivial because there are two control targets, whereas the standard LMI stabilizes a single control target. In this study, the problem is first resolved by building a single fictitious model because the two models are serial and can be considered as a single model from the Q-filter point of view. Using the proposed design framework, all-stabilizing Q filters are calculated. In addition, for the stability and robustness of the DO, two metrics are proposed to quantify the stability and robustness and combined into a single unified index to satisfy both metrics. Based on an application example, it is verified that the proposed method is effective, with a performance improvement of 10.8%.


Sign in / Sign up

Export Citation Format

Share Document