scholarly journals CubeSat’s Deployable Solar Panel with Viscoelastic Multilayered Stiffener for Launch Vibration Attenuation

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Shankar Bhattarai ◽  
Hongrae Kim ◽  
Hyun-Ung Oh

Ensuring the structural safety of a deployable solar panel under a severe launch vibration environment is one of the important factors for a successful CubeSat mission. A CubeSat’s deployable solar panel proposed in this study is effective to guarantee the structural safety of solar cells by attenuating launch loads owing to the superior damping characteristic achieved by a multilayered stiffener with viscoelastic acrylic tapes. The demonstration model of 3 U CubeSat’s deployable solar panel was fabricated and tested to validate the effectiveness of the proposed design. The basic dynamic characteristics of the solar panel were measured through free-vibration tests according to the various layers of the stiffener. Moreover, the characteristics of the deployed solar panel were measured and investigated under various temperatures to predict its capability under in-orbit operation. The effectiveness of the proposed design for launch vibration attenuation was demonstrated through qualification level sine and random vibration tests.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Tae-Yong Park ◽  
Bong-Geon Chae ◽  
Hyun-Ung Oh

In the present work, a deployable solar panel based on a burn wire triggering holding and release mechanism was developed for use of 6 U CubeSat. The holding and release mechanism was designed based on a nichrome burn wire cutting method widely used for CubeSat applications. However, it provides a high loading capability, reliable wire cutting, multiplane constraints, and handling simplicity during the tightening process of wire. A demonstration model of a printed circuit board-based solar panel stiffened by a high-pressure fiberglass-laminated G10 material was fabricated and tested to validate the effectiveness of the design and functionality of the mechanism under various test conditions. The structural safety of the solar panel combined with the mechanism in a launch vibration environment was verified through sine and random vibration tests at qualification level.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Ma ◽  
Shinji Nakata ◽  
Akihito Yoshida ◽  
Yukio Tamura

Full-scale tests on a one-story steel frame structure with a typical precast cladding system using ambient and free vibration methods are described in detail. The cladding system is primarily composed of ALC (Autoclaved Lightweight Concrete) external wall cladding panels, gypsum plasterboard interior linings, and window glazing systems. Ten test cases including the bare steel frame and the steel frame with addition of different parts of the precast cladding system are prepared for detailed investigations. The amplitude-dependent dynamic characteristics of the test cases including natural frequencies and damping ratios determined from the tests are presented. The effects of the ALC external wall cladding panels, the gypsum plasterboard interior linings, and the window glazing systems on the stiffness and structural damping of the steel frame are discussed in detail. The effect of the precast cladding systems on the amplitude dependency of the dynamic characteristics and the tendencies of the dynamic parameters with respect to the structural response amplitude are investigated over a wide range. Furthermore, results estimated from the ambient vibration method are compared with those from the free vibration tests to evaluate the feasibility of the ambient vibration method.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 64
Author(s):  
Shankar Bhattarai ◽  
Ji-Seong Go ◽  
Hongrae Kim ◽  
Hyun-Ung Oh

The structural safety of solar cells mounted on deployable solar panels in the launch vibration environment is a significant aspect of a successful CubeSat mission. This paper presents a novel highly damped deployable solar panel module that is effective in ensuring structural protection of solar cells under the launch environment by rapidly suppressing the vibrations transmitting through the solar panel by constrained layer damping achieved using printed circuit board (PCB)-based multilayered thin stiffeners with double-sided viscoelastic tapes. A high-damping solar panel demonstration model with a three-pogo pin-based burn wire release mechanism was fabricated and tested for application in the 6U CubeSat “STEP Cube Lab-II” developed by Chosun University, South Korea. The reliable release function and radiation hardness assurance of the mechanism in an in-orbit environment were confirmed by performing solar panel deployment tests and radiation tests, respectively. The design effectiveness and structural safety of the proposed solar panel module were validated by launch vibration and in-orbit environment tests at the qualification level.


2021 ◽  
Vol 106 ◽  
pp. 103368
Author(s):  
Thomas Schumacher ◽  
Alaa W. Hameed ◽  
Christopher Higgins ◽  
Brittany Erickson

2017 ◽  
Vol 24 (19) ◽  
pp. 4465-4483 ◽  
Author(s):  
Mohsen Amjadian ◽  
Anil K Agrawal

Horizontally curved bridges have complicated dynamic characteristics because of their irregular geometry and nonuniform mass and stiffness distributions. This paper aims to develop a simplified and practical method for the calculation of the natural frequencies and mode shapes of horizontally curved bridges that would be of interest to bridge engineers for the estimation of the seismic response of these types of bridges. For this purpose, a simple three-degree-of-freedom (3DOF) dynamic model for free vibration equation of this type of bridge has been developed. It is shown that the translational motion of the deck of horizontally curved bridges in the direction that is perpendicular to their axis of symmetry is always coupled with the rotational motion of the deck, regardless of the location of the stiffness center. The model is further exploited to develop closed-form formulas for the estimation of the maximum displacements of the corners of the deck of one-way asymmetric horizontally curved bridges. The accuracy of the model is verified by finite-element model of a horizontally curved bridge prototype in OpenSEES. Finally, the model is utilized to study the influence of the location of the stiffness center with respect to the deck curvature center on the natural frequency and the maximum displacements of the corners of the deck for different curvatures of the deck. The results of free vibration analysis show that the natural frequencies of one-way asymmetric horizontally curved bridges, in general, increase with the increase of the subtended angle of the deck. The results of earthquake response spectrum analysis show that the increase in the subtended angle of one-way asymmetric horizontally curved bridges decreases the radial displacements of the corners of the deck but increases the azimuthal displacement. These two responses both increase with the increase in the distance between the stiffness center and the curvature center.


2017 ◽  
Vol 251 ◽  
pp. 223-234 ◽  
Author(s):  
A.K. Arof ◽  
I.M. Noor ◽  
M.H. Buraidah ◽  
T.M.W.J. Bandara ◽  
M.A. Careem ◽  
...  

Author(s):  
Balaji K ◽  
Dharshan T R ◽  
Mahendran P ◽  
Priyadharsini R

The renewable energies, solar energy is the only energy gained its popularity and importance quickly. Through the solar tracking system, we can produce an abundant amount of energy which makes the solar panel’s workability much more efficient. Perpendicular proportionality of the solar panel with the sun rays is the reason lying behind its efficiency. Pecuniary, its installation charge is high provided cheaper options are also available. The main control circuit is based upon NodeMcu microcontroller. Programming of this device is done in the manner that the LDR sensor, in accordance with the detection of the sun rays, will provide direction to the DC Motor that in which way the solar panel is going to revolve. Through this, the solar panel is positioned in such a manner that the maximum amount of sun rays could be received. Though a hike in the efficiency of the solar panel had a handsome increase still perfection was a far-fetched goal for it. Below 40%, most of the panels still hover to operate. Consequently, peoples are compelled to purchase a number of panels in order to meet their energy demands or purchase single systems with large outputs. Availability of the solar cells types with higher efficiencies is on provided they are too costly to purchase. Ways to be accessed for increasing solar panel efficiencies are a plethora in number still one of the ways to be availed for accomplishing the said purpose while reducing costs, is tracking. Tracking helps in the wider projection of the panel to the Sun with increased power output. It could be dual or single axis tracker


1990 ◽  
Vol 112 (4) ◽  
pp. 297-303 ◽  
Author(s):  
G. Moe ◽  
Z.-J. Wu

This paper reports an extensive program of forced and free vibration tests on a single circular cylinder moving mainly perpendicularly to a uniform current. For both free and forced vibration tests, two cases were investigated: one in which the cylinder was restrained in the in-line direction and the other in which it was supported on suitable springs. The cross-flow vibrational response and hydrodynamic forces on the cylinder were measured. Large variations of motion frequency in the “lock-in” range were found from the free vibration tests. This leads to two different definitions of reduced velocity, namely, a so-called nominal reduced velocity based on one reference frequency and the true reduced velocity based on the actual vibration frequency. When different results are compared, the true reduced velocity should be used. The forced vibration tests showed, as may be expected, that the transverse force in the “lock-in” range on the average will add energy to the cylinder at moderate motion amplitudes and subtract energy at large amplitudes. Some conditions resulting in a steady-state vibration of a flexibly mounted cylinder were analyzed. The actual force traces also show very large and apparently random deviations from the average force amplitude. The results from the forced and the free vibration tests are consistent with each other if the true reduced velocity and reduced amplitude are the same.


2017 ◽  
Vol 7 (2) ◽  
pp. 6 ◽  
Author(s):  
Xuan Zhang ◽  
Kazuyuki Hanahara ◽  
Yukio Tada

In this study, we discuss the dynamics of a type of hanging truss structural system consisting of rigid and wire members, part of which are SMA (shape memory alloy) wires. This kind of truss structure has the capability of vibration isolation and absorption. Characteristics of zero compressive stiffness of wire members, SMA wire members and hanging configuration of the structure itself contribute to the effect of vibration isolation. The hysteretic loop of SMA wires plays a significant role in vibration attenuation. Mathematical models for this kind of dynamic problem are developed. Calculation process is introduced to take into account the mechanical characteristics of SMA and wire members. Dynamic characteristics are discussed; simultaneously, the effects of vibration isolation and attenuation have been confirmed. On the basis of the numerical calculations, advantages of combinations of various types of wire members, including the truss units having no bracing wires have been demonstrated. 


Sign in / Sign up

Export Citation Format

Share Document