scholarly journals Effect of Perforation Interval Design on Gas Production from the Validated Hydrate-Bearing Deposits with Layered Heterogeneity by Depressurization

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yingli Xia ◽  
Tianfu Xu ◽  
Yilong Yuan ◽  
Xin Xin

Natural gas hydrate is considered as one of the best potential alternative resource to address the world’s energy demand. The available geological data at the Mallik site of Canada indicates the vertical heterogeneities of hydrate reservoir petrophysical properties. According to the logging data and sample analysis results at the Mallik 2L-38 well, a 2D model of geologically descriptive hydrate-bearing sediments was established to investigate the multiphase flow behaviors in hydrate reservoir induced by gas recovery and the effects of perforation interval on gas production performance. Firstly, the constructed model with vertical heterogeneous structures of permeability, porosity, and hydrate saturation was validated by matching the measured data in the Mallik 2007 test. The excessive residual methane in the hydrate reservoir observed in simulated results indicates insufficient gas production efficiency. For more effective methane recovery from a hydrate reservoir, the effect of perforation interval on long-term gas production performance was investigated based on the validated reservoir model. The simulation results suggest that both the location and length of the perforation interval have significant impact on hydrate dissociation behavior, while the gas production performance is mainly affected by the length of the perforation interval. To be specific, an excellent gas release performance is found in situations where the perforation interval is set at the interface between a hydrate reservoir and an underlying water-saturated zone. By increasing the perforation interval lengths of 5 m, 8 m, and 10 m, the gas release volumes from hydrate dissociation and gas production volumes from production wells are increased by 34%, 52%, and 57% and 37%, 58%, and 62%, respectively.

2015 ◽  
Vol 7 (2) ◽  
pp. 102
Author(s):  
Ferian Anggara ◽  
Kyuro Sasaki ◽  
Yuichi Sugai

This presents study investigate the effect of swelling on gas production performances at coal reservoirs during CO2-ECBMR processes. The stressdependent permeability-models to express effect of coal matrix shrinkage/swelling using Palmer and Mansoori (P&M) and Shi and Durucan (S&D) models were constructed based on present experimental results for typical coal reservoirs with the distance of 400 to 800 m between injection and production wells. By applying the P&M and S&D models, the numerical simulation results showed that CH4 production rate was decreasing and peak production time was delayed due to effect of stress and permeability changes caused by coal matrix swelling. The total CH4 production ratio of swelling effect/no-swelling was simulated as 0.18 to 0.95 for permeability 1 to 100 mD, respectively. It has been cleared that swelling affects gas production at permeability 1 to 15 mD, however, it can be negligible at permeability over 15 mD.


2021 ◽  
Author(s):  
Mohamed El Sgher ◽  
Kashy Aminian ◽  
Ameri Samuel

Abstract The objective of this study was to investigate the impact of the hydraulic fracturing treatment design, including cluster spacing and fracturing fluid volume on the hydraulic fracture properties and consequently, the productivity of a horizontal Marcellus Shale well with multi-stage fractures. The availability of a significant amount of advanced technical information from the Marcellus Shale Energy and Environment Laboratory (MSEEL) provided an opportunity to perform an integrated analysis to gain valuable insight into optimizing fracturing treatment and the gas recovery from Marcellus shale. The available technical information from a horizontal well at MSEEL includes well logs, image logs (both vertical and lateral), diagnostic fracture injection test (DFIT), fracturing treatment data, microseismic recording during the fracturing treatment, production logging data, and production data. The analysis of core data, image logs, and DFIT provided the necessary data for accurate prediction of the hydraulic fracture properties and confirmed the presence and distribution of natural fractures (fissures) in the formation. Furthermore, the results of the microseismic interpretation were utilized to adjust the stress conditions in the adjacent layers. The predicted hydraulic fracture properties were then imported into a reservoir simulation model, developed based on the Marcellus Shale properties, to predict the production performance of the well. Marcellus Shale properties, including porosity, permeability, adsorption characteristics, were obtained from the measurements on the core plugs and the well log data. The Quanta Geo borehole image log from the lateral section of the well was utilized to estimate the fissure distribution s in the shale. The measured and published data were utilized to develop the geomechnical factors to account for the hydraulic fracture conductivity and the formation (matrix and fissure) permeability impairments caused by the reservoir pressure depletion during the production. Stress shadowing and the geomechanical factors were found to play major roles in production performance. Their inclusion in the reservoir model provided a close agreement with the actual production performance of the well. The impact of stress shadowing is significant for Marcellus shale because of the low in-situ stress contrast between the pay zone and the adjacent zones. Stress shadowing appears to have a significant impact on hydraulic fracture properties and as result on the production during the early stages. The geomechanical factors, caused by the net stress changes have a more significant impact on the production during later stages. The cumulative gas production was found to increase as the cluster spacing was decreased (larger number of clusters). At the same time, the stress shadowing caused by the closer cluster spacing resulted in a lower fracture conductivity which in turn diminished the increase in gas production. However, the total fracture volume has more of an impact than the fracture conductivity on gas recovery. The analysis provided valuable insight for optimizing the cluster spacing and the gas recovery from Marcellus shale.


SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Yingli Xia ◽  
Tianfu Xu ◽  
Yilong Yuan ◽  
Xin Xin ◽  
Huixing Zhu

Summary Natural gas hydrate (NGH) is regarded as an important alternative future energy resource. In recent years, a few short-term production tests have been successfully conducted with both permafrost and marine sediments. However, long-term hydrate production performance and the potential geomechanical problems are not very clear. According to the available geological data at the Mallik site, a more realistic hydrate reservoir model that considers the heterogeneity of porosity, permeability, and hydrate saturation was developed and validated by reproducing the field depressurization test. The coupled multiphase and heat flow and geomechanical response induced by depressurization were fully investigated for long-term gas production from the validated hydrate reservoir model. The results indicate that long-term gas production through depressurization from a vertically heterogeneous hydrate reservoir is technically feasible, but the production efficiency is generally modest, with the low average gas production rate of 4.93 × 103 ST m3/d (ST represents the standard conditions) over a 1-year period. The hydrate dissociation region is significantly affected by the reservoir heterogeneity and reveals a heterogeneous dissociation front in the reservoir. The depressurization production results in significant increase of shear stress and vertical compaction in the hydrate reservoir. The response of shear stress indicates that the potential region of sand migration is mainly in the sand-dominant layer during gas production from the hydraulically heterogeneous hydrate reservoir (e.g., sand layers interbedded with clay layers). The maximum subsidence is approximately 78 mm and occurred at the 72nd day, whereas the final subsidence is slowly dropped to 63 mm after 1-year of depressurization production. The vertical subsidence is greatly dependent on the elastic properties and the permeability anisotropy. In particular, the maximum subsidence increased by approximately 81% when the ratio of permeability anisotropy was set at 5:1. Furthermore, the potential shear failure in the hydrate reservoir is strongly correlated to the in-situ stress state. For the normal fault stress regime, the greater the initial horizontal stress is, the less likely the hydrate reservoir is to undergo shear failure during depressurization production.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 522-530 ◽  
Author(s):  
Stian Almenningen ◽  
Per Fotland ◽  
Martin A. Fernø ◽  
Geir Ersland

Summary Sedimentary methane hydrates contain a vast amount of untapped natural gas that can be produced through pressure depletion. Several field pilots have proved the concept with days to weeks of operation, but the longer-term response remains uncertain. This paper investigates the parameters affecting the rate of gas recovery from methane-hydrate-bearing sediments. The recovery of methane gas from hydrate dissociation through pressure depletion was studied at different initial hydrate saturations and different constant production pressures in cylindrical sandstone cores. Core-scale dissociation patterns were mapped with magnetic resonance imaging (MRI), and pore-scale dissociation events were visualized in a high-pressure micromodel. Key findings from the gas-production-rate analysis are that the maximum rate of recovery is only to a small extent affected by the magnitude of the pressure reduction below the dissociation pressure, and that the hydrate saturation directly affects the rate of recovery, where intermediate hydrate saturations (0.30 to 0.50) give the highest initial recovery rate. These results are of interest to anyone who evaluates the production performance of sedimentary hydrate accumulations and demonstrate how important accurate saturation estimates are to prediction of both the initial rate of gas recovery and the ultimate-recovery efficiency.


2009 ◽  
Vol 12 (04) ◽  
pp. 595-609 ◽  
Author(s):  
Shahab Gerami ◽  
Mehran Pooladi-Darvish

Summary Development of natural gas hydrates as an energy resource has gained significant interest during the past decade. Hydrate reservoirs may be found in different geologic settings including deep ocean sediments and arctic areas. Some reservoirs include a free-gas zone beneath the hydrate and such a situation is referred to as a hydrate-capped gas reservoir. Gas production from such a reservoir could result in pressure reduction in the hydrate cap and endothermic decomposition of hydrates. Well testing in conventional reservoirs is used for estimation of reservoir and near-wellbore properties. Drawdown testing in a hydrate-capped gas reservoir needs to account for the effect of gas from decomposing hydrates. This paper presents a 2D (r,z) mathematical model for a constant-rate drawdown test performed in a well completed in the free-gas zone of a hydrate-capped gas reservoir during the earlytime production. Using energy and material balance equations, the effect of endothermic hydrate decomposition appears as an increased compressibility in the resulting governing equation. The solution for the dimensionless wellbore pressure is derived using Laplace and finite Fourier cosine transforms. The solution to the analytical model was compared with a numerical hydrate reservoir simulator across some range of hydrate reservoir parameters. The use of this solution for determination of reservoir properties is demonstrated using a synthetic example. Furthermore, the solution may be used to quantify the contribution of hydrate decomposition on production performance. Introduction In recent years, demands for energy have stimulated the development of unconventional gas resources, which are available in enormous quantities around the world. Gas hydrate as an unconventional gas resource may be found in two geologic settings (Sloan 1991):on land in permafrost regions, andin the ocean sediments of continental margins. During the last decade, extensive efforts consisting of detection of the hydrate-bearing areas, drilling, logging, coring of the intervals, production pilot-testing, and mathematical modeling of hydrate reservoirs have been pursued to evaluate the potential of gas production from these gas-hydrate resources.


2020 ◽  
Vol 205 ◽  
pp. 11004
Author(s):  
Zaher Jarrar ◽  
Riyadh Al-Raoush ◽  
Khalid Alshibli ◽  
Jongwon Jung

The availability of natural gas hydrates and the continuing increase in energy demand, motivated researchers to consider gas hydrates as a future source of energy. Fundamental understanding of hydrate dissociation kinetics is essential to improve techniques of gas production from natural hydrates reservoirs. During hydrate dissociation, bonds between water (host molecules) and gas (guest molecules) break and free gas is released. This paper investigates the evolution of hydrate surface area, pore habit, and tortuosity using in-situ imaging of Xenon (Xe) hydrate formation and dissociation in porous media with dynamic three-dimensional synchrotron microcomputed tomography (SMT). Xe hydrate was formed inside a high- pressure, low-temperature cell and then dissociated by thermal stimulation. During formation and dissociation, full 3D SMT scans were acquired continuously and reconstructed into 3D volume images. Each scan took only 45 seconds to complete, and a total of 60 scans were acquired. Hydrate volume and surface area evolution were directly measured from the SMT scans. At low hydrate saturation, the predominant pore habit was surface coating, while the predominant pore habit at high hydrate saturation was pore filling. A second-degree polynomial can be used to predict variation of tortuosity with hydrate saturation with an R2 value of 0.997.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xin Xin ◽  
Si Li ◽  
Tianfu Xu ◽  
Yilong Yuan

Nature gas hydrate is a new kind of clean and potential resources. Depressurization is regarded as the most effective and promising hydrate production technology. One of the key points in improving the gas production effectiveness of depressurization is whether pressure gradient could transmit in strata effectively. Single well method is widely used in hydrate exploit which is circumscribed in expanding the range of hydrate decomposition. Consequently, the well structure and production strategy needs to be optimized for improving the gas recovery efficiency. The multilateral well technology is proposed for increasing the gas productivity of the reservoir greatly by increasing the multilateral branches. In this paper, we established a numerical simulation model based on the geological data NGHP-02-16 site in the KG basin to evaluate the gas production performance of the reservoir by depressurization. It mainly focuses on investigating the gas production performance of multilateral wells with different combinations of geometric parameters of multilateral branches, such as different dip angle, numbers, and spacing of lateral branches. The result shows that the multilateral well method can effectively increase the gas production rate with the water production rate increase slightly. The cumulative gas production volume of a single vertical well is about 2.85 × 10 6   m 3 , while it is of the multilateral well can reach 4.18 × 10 6   m 3 during a one-year production. The well interference, the effective influence radius of each multilateral branch, and the vertical depth of the lateral branch are the main factors which affect the gas production efficiency of the multilateral well. The optimization of the geometric parameters of lateral should consider not only the gas production efficiency but also the well interference between the lateral branches.


Sign in / Sign up

Export Citation Format

Share Document