scholarly journals Seismic Fragility Assessment of Base-Isolated Steel Water Storage Tank

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhuo Zhao ◽  
Xiaowei Lu ◽  
Yu Guo ◽  
Xiaofeng Zhao

Steel water storage tanks (WSTs) are among the important components of water treatment industry facilities that are expected to remain functional and applicable after strong earthquakes. In this study, the seismic vulnerability of base-isolated steel WST is investigated. A three-dimensional finite element stick model of the targeted tank is created using OpenSees. This model is capable of reproducing convective, impulsive, and rigid responses of fluid-tank systems. Time-history responses of convective displacement, bearing displacement, and base shear force for base-isolated tank subjected to a typical ground motion are compared. Furthermore, time-history analysis based on a suite of 80 ground motions is conducted. The seismic demand models for various responses are established and the most efficient intensity measure (IM) is determined based on the dispersion and coefficient of determination. Seismic fragility curves for different responses are derived for all three damage states using cloud analysis. The results from this study reveal that (i) the convective displacement is significantly greater than bearing displacement; (ii) peak ground displacement (PGD) is the most efficient and sufficient IM for the targeted tank; and (iii) the characteristic of isolation bearing significantly influences the seismic fragilities of convective displacement and bearing displacement and has a little impact on base shear force, which makes the selection of the proper characteristic parameters for isolation bearing very essential. The analysis technique and procedure mentioned above as well as derived insights are of significance to general liquid storage tank system configuration.

2021 ◽  
Author(s):  
Lujie Zhuang ◽  
Yutao Pang

Abstract Cloud analysis is based on linear regression in the logarithmic space by using least squares, in which a large number of nonlinear dynamic analyses are usually suggested to ensure the accuracy of this method. So, it needs significant computational effort to establish fragility curves especially for the complicated structures. The present paper proposed the Enhanced Cloud Method (E-Cloud) to enhance the efficiency but maintain the accuracy of the Cloud method. The basic concept of the proposed “E-Cloud” aims to utilize both maximum and additional seismic responses with corresponding intensity measures (IMs) from ground motions for the logarithmic linear regression of the Cloud method. Since the nonlinear time-history responses can be transferred to the Engineering Demand Parameter (EDP)-IM curve at the duration when the ground motion is intensifying, the additional seismic responses at different IM levels (i.e., potential Cloud points) can be selected from this EDP-IM curve. These potential Cloud points are combined with maximum seismic responses for the regression so as to reduce the required number of dynamic analyses in Cloud analysis. The proposed “E-Cloud” method is applied for the case study of a typical RC frame structure. By comparison of the obtained probabilistic seismic demand models and fragility curves from “E-Cloud” method to Cloud analysis, it is demonstrated that the E-Cloud method can significantly improve the computational efficiency of the Cloud analysis, which also leads to accurate and stable results for the seismic fragility assessment of structures.


2020 ◽  
Vol 180 ◽  
pp. 107029
Author(s):  
Pin Wu ◽  
Zhichao Wang ◽  
Xiaofeng Li ◽  
Zhaowei Xu ◽  
Yingxia Yang ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Musa Manga ◽  
Timothy G. Ngobi ◽  
Lawrence Okeny ◽  
Pamela Acheng ◽  
Hidaya Namakula ◽  
...  

Abstract Background Household water storage remains a necessity in many communities worldwide, especially in the developing countries. Water storage often using tanks/vessels is envisaged to be a source of water contamination, along with related user practices. Several studies have investigated this phenomenon, albeit in isolation. This study aimed at developing a systematic review, focusing on the impacts of water storage tank/vessel features and user practices on water quality. Methods Database searches for relevant peer-reviewed papers and grey literature were done. A systematic criterion was set for the selection of publications and after scrutinizing 1106 records, 24 were selected. These were further subjected to a quality appraisal, and data was extracted from them to complete the review. Results and discussion Microbiological and physicochemical parameters were the basis for measuring water quality in storage tanks or vessels. Water storage tank/vessel material and retention time had the highest effect on stored water quality along with age, colour, design, and location. Water storage tank/vessel cleaning and hygiene practices like tank/vessel covering were the user practices most investigated by researchers in the literature reviewed and they were seen to have an impact on stored water quality. Conclusions There is evidence in the literature that storage tanks/vessels, and user practices affect water quality. Little is known about the optimal tank/vessel cleaning frequency to ensure safe drinking water quality. More research is required to conclusively determine the best matrix of tank/vessel features and user practices to ensure good water quality.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4741
Author(s):  
María Gasque ◽  
Federico Ibáñez ◽  
Pablo González-Altozano

This paper demonstrates that it is possible to characterize the water temperature profile and its temporal trend in a hot water storage tank during the thermal charge process, using a minimum number of thermocouples (TC), with minor differences compared to experimental data. Four experimental tests (two types of inlet and two water flow rates) were conducted in a 950 L capacity tank. For each experimental test (with 12 TC), four models were developed using a decreasing number of TC (7, 4, 3 and 2, respectively). The results of the estimation of water temperature obtained with each of the four models were compared with those of a fifth model performed with 12 TC. All models were tested for constant inlet temperature. Very acceptable results were achieved (RMSE between 0.2065 °C and 0.8706 °C in models with 3 TC). The models were also useful to estimate the water temperature profile and the evolution of thermocline thickness even with only 3 TC (RMSE between 0.00247 °C and 0.00292 °C). A comparison with a CFD model was carried out to complete the study with very small differences between both approaches when applied to the estimation of the instantaneous temperature profile. The proposed methodology has proven to be very effective in estimating several of the temperature-based indices commonly employed to evaluate thermal stratification in water storage tanks, with only two or three experimental temperature data measurements. It can also be used as a complementary tool to other techniques such as the validation of numerical simulations or in cases where only a few experimental temperature values are available.


Sign in / Sign up

Export Citation Format

Share Document