scholarly journals The Role of Microfabric and Laminae on Pore Structure and Gas Transport Pathways of Marine Shales from Sichuan Basin, China

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yi Shu ◽  
Shang Xu ◽  
Feng Yang ◽  
Zhiguo Shu ◽  
Pan Peng ◽  
...  

This study investigated the effects of microfabric and laminae on the pore structure and gas transport pathways of the Silurian Longmaxi shales from Sichuan Basin. 23 shale samples with varied lithofacies were comprehensively investigated by mineralogy, organic geochemistry, pycnometry, and low-pressure nitrogen adsorption analysis. The fabric and laminae of these samples were identified using petrographic microscope and scanning electron microscopy. Permeabilities were measured using the nonsteady-state method on both perpendicular and parallel to bedding shales. The effective pore diameter controlling gas transport was estimated from gas slippage factors obtained in permeability measurements. These values were also compared to those calculated using the Winland equation. Siliceous shales studied are faintly laminated to nonlaminated and have larger porosity and specific surface area. Argillaceous/siliceous mixed shales are well laminated, whereas argillaceous shales contain many oriented clay flakes along the lamination. Both porosity and surface area are positively correlated with TOC content. Unlike most conventional reservoirs, there is a negative correlation between porosity and permeability values of the samples studied. Permeabilities parallel to bedding, ranging from 0.4 to 76.6 μD, are in control of the oriented clay flakes and silty microlaminae. Permeability anisotropy values of the shales vary between 1.3 and 49.8. Samples rich in oriented clay flakes and microlaminated fabric have relatively larger permeability and permeability anisotropy values. The effective transport pore diameters derived from gas slippage measurements are slightly lower than those calculated from the Winland equation. However, both methods have shown that the effective transport pore diameters of argillaceous shales (averaging 552 nm) are significantly higher than siliceous shales (averaging 198 nm), which underlines the control of microfabric, rather than porosity, on gas transport pathways of the shales studied.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Weiwei Liu ◽  
Kun Zhang ◽  
Qianwen Li ◽  
Zhanhai Yu ◽  
Sihong Cheng ◽  
...  

Due to the specificity of the geological background, terrestrial strata are widely distributed in the major hydrocarbon-bearing basins in China. In addition, terrestrial shales are generally featured with high thickness, multiple layers, high TOC content, ideal organic matter types, and moderate thermal evolution, laying a solid material foundation for hydrocarbon generation. However, the quantitative characterization study on their pore structure remains inadequate. In this study, core samples were selected from the Middle Jurassic Lianggaoshan Formation in the southeastern Sichuan Basin of the Upper Yangtze Region for analyses on its TOC content and mineral composition. Besides, experiments including oil washing, the adsorption/desorption of CO2 and nitrogen, and high-pressure mercury pressure experiments were carried out. The pore structure of different petrographic types of terrestrial shales can be accurately and quantitatively characterized with these works. The following conclusions were drawn: for organic-rich mixed shales and organic-rich clay shales, the TOC content is the highest; the pore volume, which is primarily provided by macropores and specific surface area, which is provided by mesopores, was the largest, thus providing more space for shale oil and gas reservation. The pores take on a shape either close to a parallel plate slit or close to or of an ink bottle. For organic-matter-bearing shales, both the pore volume and specific surface area are the second-largest and are provided by the same sized pores with organic-rich mixed shales. Its pores take on a shape approximating either a parallel plate slit or an ink bottle. Organic-matter-bearing mixed shales have the lowest pore volume and specific surface area; its pore volume is primarily provided by macropores, and the specific surface area by mesopores and the shape of the pores are close to an ink bottle.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shouxu Pan ◽  
Ming Zha ◽  
Changhai Gao ◽  
Jiangxiu Qu ◽  
Xiujian Ding

In order to examine the pore structure and reveal the fractal geometric nature of shales, a series of laboratory experiments were conducted on lacustrine shale samples cored from the Kongdian Formation. Based on the low temperature nitrogen adsorption, fluorescent thin section and field emission scanning electronic microscope, a comprehensive pore structure classification and evaluation were conducted on shale samples. Fractal dimensions D1 and D2 (with relative pressure of 0–0.45 and 0.45–1.00, respectively) were obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH) method. With additional means of X-ray diffraction analysis, total organic carbon content analysis and thermal maturity analysis, the relationships between pore structure parameters, fractal dimensions, TOC content and mineral composition are presented and discussed in this paper. The results show that interparticle pores and microfractures are predominant, whereas organic matter pores are rarely found. The pore morphology is primarily featured with wide-open ends and slit-shaped structures. In terms of pore scale, mesopores and macropores are predominant. The value of fractal dimension D1 representing small pores ranges from 2.0173 to 2.4642 with an average of 2.1735. The value of D2 which represents large pores ranges from 2.3616 to 2.5981 with an average of 2.4960. These low numbers are an indication of few pore types and relatively low heterogeneity. In addition, smaller D1 values reveal that large pores have more complicated spatial structures than smaller ones. The results of correlation analysis show that: 1) D2 is correlated positively with specific surface area but negatively with average pore diameter; 2) D1 and D2 literally show no obvious relationship with mineral composition, TOC content or vitrinite reflectance (Ro); 3) both total Barrett-Joyner-Halenda (BJH) volume and specific surface area show a positive relationship with dolomite content and a negative relationship with felsic minerals content. These results demonstrate that the pore types are relatively few and dominated by mesopores, and the content of brittle minerals such as dolomite and felsic minerals control the pore structure development whilst organic matter and clay minerals have less influence due to low thermal maturity and abundance of clay minerals.


2013 ◽  
Vol 341-342 ◽  
pp. 345-350 ◽  
Author(s):  
Wei Min Cheng ◽  
Xiao Qiang Zhang ◽  
Rui Zhang ◽  
Gang Wang

In view of pore distribution in coal, this paper applies BJH method that is based on the cylinder theory and adopts cryogenic liquid nitrogen adsorption method to carry out experimental investigation on pore structure of No.3U coal seam in Sanhekou Coalmine, obtaining the fact that pore structure of No.3U coal is complicated, the cool pores are mostly flask pores, others are the parallel plate pores with one end closed and the cylinder pores with one end closed; According to the distribution of BJH pore volume and pore surface area, ultramicropores with apertures less than 10 nm are among the most; Then obtain the average BET specific surface area, the distribution of BJH pore volume and pore area, average single-point total pore volume and most probable pore .etc, which conducive to a better understanding of the micropores characteristic of coal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Li ◽  
Zhongbao Liu ◽  
Haikuan Nie ◽  
Xinping Liang ◽  
Qianwen Li ◽  
...  

The lacustrine shale in the Dongyuemiao Member of the Fuling area, Sichuan Basin, is widely distributed and has huge shale oil resource potential. It is one of the important replacement areas for shale oil exploration in China. To investigate the key shale oil evaluation well, Well FY10, in the Fuling area, X-ray diffraction (XRD) mineral analysis, Rock-Eval, argon ion polishing-scanning electron microscope (SEM), Mercury injection capillary pressure (MICP), and low pressure nitrogen adsorption were launched to determine the heterogeneity of the pore system in the lacustrine shale of the Dongyuemiao Member. The mineral composition exhibits a high degree of heterogeneity, and the shale can be divided into two main lithofacies: argillaceous shale and mixed shale. The porosity ranges from 2.95 to 8.43%, and the permeability ranges from 0.05 to 1.07 × 10−3 μm2. The physical properties of mixed shale are obviously better than those of argillaceous shale. Inorganic mineral pores, such as linear pores between clay minerals and calcite dissolution pores, are mainly developed, while a small amount of organic pores can be observed. The average total pore volume (Vp) is 0.038 ml/g with an average specific surface area of 5.38 m2/g. Mesopores provide the main Vp (average 61.72%), and micropores provide mostly specific surface area. TOC imposes a strong controlling effect on the development of micropores. Clay minerals are the main contributors to mesopores and macropores. The organic-inorganic interaction during the process of diagenesis and hydrocarbon generation controls the formation of shale pore systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yao Cheng ◽  
Yifeng Xie ◽  
Yulin Ma ◽  
Yanlin Zhao

In this study, the pore structure and fractal characteristics of shale samples with different bedding directions and sizes from the Longmaxi Formation of the Changning block in the Sichuan Basin were investigated by using CT imaging and low-temperature nitrogen adsorption experiments. The pore morphology, pore structure characteristics, relationships between the fractal dimensions and pore parameters, and effect of the size and bedding direction on pore morphology and various pore parameters were explored. In terms of pore structure characteristics, we found that the pores of shale samples were well developed and connected, forming a large number of pore clusters. The pores were mainly open pores and mesopores, which contributed the most to the specific surface area of the pores. Two fractal dimensions D1 and D2 were calculated from nitrogen adsorption data at relative pressures of 0–0.45 and 0.45–1, using the FHH method. These fractal dimensions characterized the pore surface and pore structure complexity, respectively. D1 ranged from 2.773 to 2.923, with a mean value of 2.821, and D2 varied from 2.853 to 2.899, with a mean value of 2.874. These variations indicated that there were irregular pore surfaces and sophisticated pore structures in the shale. The sample size and bedding direction had a significant impact on pore morphology and various pore parameters. Several pore characteristics of the vertical samples were superior to those of the horizontal samples. With an increase in size, the pore distribution became more uniform, the number of pore clusters increased, and the connectivity between pore clusters was enhanced. There was a good positive correlation between the fractal dimension D2 and specific surface area and moderate positive correlation between D2 and porosity and between D2 and pore volume. However, the fractal dimension D1 had a weak negative correlation with porosity and specific surface area and moderate negative correlation with pore volume. Moreover, both D1 and D2 tended to decrease with increasing average pore diameter.


Clay Minerals ◽  
1977 ◽  
Vol 12 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E. Paterson

AbstractLow temperature nitrogen adsorption has been used to study the external and internal structure of a number of allophanic soil clays. The results indicate that allophane, in addition to having pores in the intermediate size range (2–10 nm radius), contains micropores of < 1 nm radius. The occurrence of hitherto unreported micropores in allophanic clays has necessitated re-evaluation of the validity of specific surface area measurements.


2011 ◽  
Vol 415-417 ◽  
pp. 1545-1552 ◽  
Author(s):  
Ming Tang ◽  
Jing Qi Li

In order to confirm the surface fractal dimension of the internal pore of complex porous materials by means of the FHH model and nitrogen adsorption method. Study the change rule on fractal characteristics of the pore of cement based materials further. The results shows that, surface area of the complex internal structure of cement based materials has the fractal characteristics observably. Testing and evaluating the fractal characteristics on surface area of the pore of cement-based materials is effective by nitrogen adsorption method. It is good for analyzing surface characteristics of pore structure further. Surface fractal dimension of pore structure and surface area have not good correlation. The characteristics and conclusion that quality fractal dimension of powder and surface area evaluating fineness of powder have not very good correlation is consistent.


Sign in / Sign up

Export Citation Format

Share Document