scholarly journals Research on Sewage Monitoring and Water Quality Prediction Based on Wireless Sensors and Support Vector Machines

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Cong Liu ◽  
Hongji Li ◽  
Qinkun Zhang

Water resource protection has an important impact on ecosystem security and human survival. Therefore, water quality testing and early warning of the sewage status are getting more and more attention. In order to solve the problems of information transmission delay and insufficient water quality prediction in current water quality monitoring, this paper proposes a wireless sensor-based dynamic water quality monitoring and prediction technology. Firstly, this paper uses the wireless sensor technology and ZigBee protocol to establish a sewage monitoring model and real-time dynamic monitoring of total nitrogen, total phosphorus, ammonia nitrogen, and other indicators of the water quality of the basin. Secondly, on the basis of wireless monitoring, a support vector algorithm is used to construct a water quality prediction model to make a reasonable prediction of the water quality of the watershed. Finally, the actual test results show that the technology can automatically and real-timely monitor the water quality of the watershed to meet the requirements of water quality monitoring in practical applications.

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3262
Author(s):  
Jianlong Xu ◽  
Zhuo Xu ◽  
Jianjun Kuang ◽  
Che Lin ◽  
Lianghong Xiao ◽  
...  

Water quality monitoring plays a vital role in the water environment management, while efficient monitoring provides direction and verification of the effectiveness of water management. Traditional water quality monitoring for a variety of water parameters requires the placement of multiple sensors, and some water quality data (e.g., total nitrogen (TN)) requires testing instruments or laboratory analysis to obtain results, which takes longer than the sensors. In this paper, we designed a water quality prediction framework, which uses available water quality variables (e.g., temperature, pH, conductivity, etc.) to predict total nitrogen concentrations in inland water bodies. The framework was also used to predict nearshore seawater salinity and temperature using remote sensing bands. We conducted experiments on real water quality datasets and random forest was chosen to be the core algorithm of the framework by comparing and analyzing the performance of different machine learning algorithms. The results show that among all tested machine learning models, random forest performs the best. The data prediction error rate of the random forest model in predicting the total nitrogen concentration in inland rivers was 4.9%. Moreover, to explore the prediction effect of random forest algorithm when the independent variable is non-water quality data, we took the reflectance of remote sensing bands as the independent variables and successfully inverted the salinity distribution of Shenzhen Bay in the Google Earth Engine (GEE) platform. According to the experimental results, the random forest-based water quality prediction framework can achieve 92.94% accuracy in predicting the salinity of nearshore waters.


Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1984 ◽  
Author(s):  
Thanda Thatoe Nwe Win ◽  
Thom Bogaard ◽  
Nick van de Giesen

Newly developed mobile phone applications in combination with citizen science are used in different fields of research, such as public health monitoring, environmental monitoring, precipitation monitoring, noise pollution measurement and mapping, earth observation. In this paper, we present a low-cost water quality mobile phone measurement technique combined with sensor and test strips, and reported the weekly-collected data of three years of the Ayeyarwady River system by volunteers at seven locations and compared these results with the measurements collected by the lab technicians. We assessed the quality of the collected data and their reliability based on several indicators, such as data accuracy, consistency, and completeness. In this study, six local governmental staffs and one middle school teacher collected baseline water quality data with high temporal and spatial resolution. The quality of the data collected by volunteers was comparable to the data of the experienced lab technicians for sensor-based measurement of electrical conductivity and transparency. However, the lower accuracy (higher uncertainty range) of the indicator strips made them less useful in the Ayeyarwady with its relatively small water quality variations. We showed that participatory water quality monitoring in Myanmar can be a serious alternative for a more classical water sampling and lab analysis-based monitoring network, particularly as it results in much higher spatial and temporal resolution of water quality information against the very modest investment and running costs. This approach can help solving the invisible water crisis of unknown water quality (changes) in river and lake systems all over the world.


Sign in / Sign up

Export Citation Format

Share Document