scholarly journals A Novel Time-Aware Hybrid Recommendation Scheme Combining User Feedback and Collaborative Filtering

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hongzhi Li ◽  
Dezhi Han

Nowadays, recommender systems are used widely in various fields to solve the problem of information overload. Collaborative filtering and content-based models are representative solutions in recommender systems; however, the content-based model has some shortcomings, such as single kind of recommendation results and lack of effective perception of user preferences, while for the collaborative filtering model, there is a cold start problem, and such a model is greatly affected by its adopted clustering algorithm. To address these issues, a hybrid recommendation scheme is proposed in this paper, which is based on both collaborative filtering and content-based. In this scheme, we propose the concept of time impact factor, and a time-aware user preference model is built based on it. Also, user feedback on recommendation items is utilized to improve the accuracy of our proposed recommendation model. Finally, the proposed hybrid model combines the results of content recommendation and collaborative filtering based on the logistic regression algorithm.

Author(s):  
EEva Diab Hriekes ◽  
Yosser AlSayed Souleiman AlAtassi

Recommender systems are one of the recent inventions to deal with information overload problem and provide users with personalized recommendations that may be of their interests. Collaborative filtering is the most popular and widely used technique to build recommender systems and has been successfully employed in many applications. However, collaborative filtering suffers from several inherent issues that affect the recommendation accuracy such as: data sparsity and cold start problems caused by the lack of user ratings, so the recommendation results are often unsatisfactory. To address these problems, we propose a recommendation method called “MFGLT” that enhance the recommendation accuracy of collaborative filtering method using trust-based social networks by leveraging different  user's situations (as a trustor and as a trustee) in these networks to model user preferences. Specifically, we propose model-based method that uses matrix factorization technique and exploit both local social context represented by modeling explicit user interactions and implicit user interactions with other users, and also the global social context represented by the user reputation in the whole social network for making recommendations. Experimental results based on real-world dataset demonstrate that our approach gives better performance than the other trust-aware recommendation approaches, in terms of prediction accuracy.  


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zhao Huang ◽  
Pavel Stakhiyevich

Although personal and group recommendation systems have been quickly developed recently, challenges and limitations still exist. In particular, users constantly explore new items and change their preferences throughout time, which causes difficulties in building accurate user profiles and providing precise recommendation outcomes. In this context, this study addresses the time awareness of the user preferences and proposes a hybrid recommendation approach for both individual and group recommendations to better meet the user preference changes and thus improve the recommendation performance. The experimental results show that the proposed approach outperforms several baseline algorithms in terms of precision, recall, novelty, and diversity, in both personal and group recommendations. Moreover, it is clear that the recommendation performance can be largely improved by capturing the user preference changes in the study. These findings are beneficial for increasing the understanding of the user dynamic preference changes in building more precise user profiles and expanding the knowledge of developing more effective and efficient recommendation systems.


2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


2021 ◽  
pp. 1063293X2110195
Author(s):  
Ying Yu ◽  
Shan Li ◽  
Jing Ma

Selecting the most efficient from several functionally equivalent services remains an ongoing challenge. Most manufacturing service selection methods regard static quality of service (QoS) as a major competitiveness factor. However, adaptations are difficult to achieve when variable network environment has significant impact on QoS performance stabilization in complex task processes. Therefore, dynamic temporal QoS values rather than fixed values are gaining ground for service evaluation. User preferences play an important role when service demanders select personalized services, and this aspect has been poorly investigated for temporal QoS-aware cloud manufacturing (CMfg) service selection methods. Furthermore, it is impractical to acquire all temporal QoS values, which affects evaluation validity. Therefore, this paper proposes a time-aware CMfg service selection approach to address these issues. The proposed approach first develops an unknown-QoS prediction model by utilizing similarity features from temporal QoS values. The model considers QoS attributes and service candidates integrally, helping to predict multidimensional QoS values accurately and easily. Overall QoS is then evaluated using a proposed temporal QoS measuring algorithm which can self-adapt to user preferences. Specifically, we employ the temporal QoS conflict feature to overcome one-sided user preferences, which has been largely overlooked previously. Experimental results confirmed that the proposed approach outperformed classical time series prediction methods, and can also find better service by reducing user preference misjudgments.


Author(s):  
Zahra Bahramian ◽  
Rahim Ali Abbaspour ◽  
Christophe Claramunt

Tourism activities are highly dependent on spatial information. Finding the most interesting travel destinations and attractions and planning a trip are still open research issues to GIScience research applied to the tourism domain. Nowadays, huge amounts of information are available over the world wide web that may be useful in planning a visit to destinations and attractions. However, it is often time consuming for a user to select the most interesting destinations and attractions and plan a trip according to his own preferences. Tourism recommender systems (TRSs) can be used to overcome this information overload problem and to propose items taking into account the user preferences. This chapter reviews related topics in tourism recommender systems including different tourism recommendation approaches and user profile representation methods applied in the tourism domain. The authors illustrate the potential of tourism recommender systems as applied to the tourism domain by the implementation of an illustrative geospatial collaborative recommender system using the Foursquare dataset.


Author(s):  
Faiz Maazouzi ◽  
Hafed Zarzour ◽  
Yaser Jararweh

With the enormous amount of information circulating on the Web, it is becoming increasingly difficult to find the necessary and useful information quickly and efficiently. However, with the emergence of recommender systems in the 1990s, reducing information overload became easy. In the last few years, many recommender systems employ the collaborative filtering technology, which has been proven to be one of the most successful techniques in recommender systems. Nowadays, the latest generation of collaborative filtering methods still requires further improvements to make the recommendations more efficient and accurate. Therefore, the objective of this article is to propose a new effective recommender system for TED talks that first groups users according to their preferences, and then provides a powerful mechanism to improve the quality of recommendations for users. In this context, the authors used the Pearson Correlation Coefficient (PCC) method and TED talks to create the TED user-user matrix. Then, they used the k-means clustering method to group the same users in clusters and create a predictive model. Finally, they used this model to make relevant recommendations to other users. The experimental results on real dataset show that their approach significantly outperforms the state-of-the-art methods in terms of RMSE, precision, recall, and F1 scores.


AI Magazine ◽  
2008 ◽  
Vol 29 (4) ◽  
pp. 93 ◽  
Author(s):  
Pearl Pu ◽  
Li Chen

We address user system interaction issues in product search and recommender systems: how to help users select the most preferential item from a large collection of alternatives. As such systems must crucially rely on an accurate and complete model of user preferences, the acquisition of this model becomes the central subject of our paper. Many tools used today do not satisfactorily assist users to establish this model because they do not adequately focus on fundamental decision objectives, help them reveal hidden preferences, revise conflicting preferences, or explicitly reason about tradeoffs. As a result, users fail to find the outcomes that best satisfy their needs and preferences. In this article, we provide some analyses of common areas of design pitfalls and derive a set of design guidelines that assist the user in avoiding these problems in three important areas: user preference elicitation, preference revision, and explanation interfaces. For each area, we describe the state-of-the-art of the developed techniques and discuss concrete scenarios where they have been applied and tested.


Author(s):  
Dalia Sulieman ◽  
Maria Malek ◽  
Hubert Kadima ◽  
Dominique Laurent

In this article, the authors consider the basic problem of recommender systems that is identifying a set of users to whom a given item is to be recommended. In practice recommender systems are run against huge sets of users, and the problem is then to avoid scanning the whole user set in order to produce the recommendation list. To cope with problem, they consider that users are connected through a social network and that taxonomy over the items has been defined. These two kinds of information are respectively called social and semantic information. In their contribution the authors suggest combining social information with semantic information in one algorithm in order to compute recommendation lists by visiting a limited part of the social network. In their experiments, the authors use two real data sets, namely Amazon.com and MovieLens, and they compare their algorithms with the standard item-based collaborative filtering and hybrid recommendation algorithms. The results show satisfying accuracy values and a very significant improvement of performance, by exploring a small part of the graph instead of exploring the whole graph.


Author(s):  
Muhammad Jabbar ◽  
Qaisar Javaid ◽  
Muhammad Arif ◽  
Asim Munir ◽  
Ali Javed

Recommender Systems are valuable tools to deal with the problem of overloaded information faced by most of the users in case of making purchase decision to buy any item. Recommender systems are used to provide recommendations in many domains such as movies, books, digital equipment’s, etc. The massive collection of available books online presents a great challenge for users to select the relevant books that meet their preferences. Users usually read few pages or contents to decide whether to buy a certain book or not. Recommender systems provide different value addition factors such as similar user ratings, users past history, user profiles, etc. to facilitate the users in terms of providing relevant recommendations according to their preferences. Recommender systems are broadly categorized into content based approach and collaborative filtering approach. Content based or collaborative filtering approaches alone are not sufficient to provide most accurate and relevant recommendations under diverse scenarios. Therefore, hybrid approaches are also designed by combining the features of both the content based and collaborative filtering approaches to provide more relevant recommendations. This paper proposes an efficient hybrid recommendation scheme for mobile platform that includes the traits of content based and collaborative filtering approaches in addition of the context based approach that is included to provide the latest books recommendations to user.Objective and subjective evaluation measures are used to compute the performance of the proposed system. Experimental results are promising and signify the effectiveness of our proposed hybrid scheme in terms of most relevant and latest books recommendations.


Sign in / Sign up

Export Citation Format

Share Document