scholarly journals Improve the Performance of Advice Systems Based on Cooperative Liquidation Using Trust Relationships

Author(s):  
EEva Diab Hriekes ◽  
Yosser AlSayed Souleiman AlAtassi

Recommender systems are one of the recent inventions to deal with information overload problem and provide users with personalized recommendations that may be of their interests. Collaborative filtering is the most popular and widely used technique to build recommender systems and has been successfully employed in many applications. However, collaborative filtering suffers from several inherent issues that affect the recommendation accuracy such as: data sparsity and cold start problems caused by the lack of user ratings, so the recommendation results are often unsatisfactory. To address these problems, we propose a recommendation method called “MFGLT” that enhance the recommendation accuracy of collaborative filtering method using trust-based social networks by leveraging different  user's situations (as a trustor and as a trustee) in these networks to model user preferences. Specifically, we propose model-based method that uses matrix factorization technique and exploit both local social context represented by modeling explicit user interactions and implicit user interactions with other users, and also the global social context represented by the user reputation in the whole social network for making recommendations. Experimental results based on real-world dataset demonstrate that our approach gives better performance than the other trust-aware recommendation approaches, in terms of prediction accuracy.  

2022 ◽  
Vol 24 (1) ◽  
pp. 139-140
Author(s):  
Dr.S. Dhanabal ◽  
◽  
Dr.K. Baskar ◽  
R. Premkumar ◽  
◽  
...  

Collaborative filtering algorithms (CF) and mass diffusion (MD) algorithms have been successfully applied to recommender systems for years and can solve the problem of information overload. However, both algorithms suffer from data sparsity, and both tend to recommend popular products, which have poor diversity and are not suitable for real life. In this paper, we propose a user internal similarity-based recommendation algorithm (UISRC). UISRC first calculates the item-item similarity matrix and calculates the average similarity between items purchased by each user as the user’s internal similarity. The internal similarity of users is combined to modify the recommendation score to make score predictions and suggestions. Simulation experiments on RYM and Last.FM datasets, the results show that UISRC can obtain better recommendation accuracy and a variety of recommendations than traditional CF and MD algorithms.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hongzhi Li ◽  
Dezhi Han

Nowadays, recommender systems are used widely in various fields to solve the problem of information overload. Collaborative filtering and content-based models are representative solutions in recommender systems; however, the content-based model has some shortcomings, such as single kind of recommendation results and lack of effective perception of user preferences, while for the collaborative filtering model, there is a cold start problem, and such a model is greatly affected by its adopted clustering algorithm. To address these issues, a hybrid recommendation scheme is proposed in this paper, which is based on both collaborative filtering and content-based. In this scheme, we propose the concept of time impact factor, and a time-aware user preference model is built based on it. Also, user feedback on recommendation items is utilized to improve the accuracy of our proposed recommendation model. Finally, the proposed hybrid model combines the results of content recommendation and collaborative filtering based on the logistic regression algorithm.


2016 ◽  
Vol 43 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Mehdi Hosseinzadeh Aghdam ◽  
Morteza Analoui ◽  
Peyman Kabiri

Recommender systems have been widely used for predicting unknown ratings. Collaborative filtering as a recommendation technique uses known ratings for predicting user preferences in the item selection. However, current collaborative filtering methods cannot distinguish malicious users from unknown users. Also, they have serious drawbacks in generating ratings for cold-start users. Trust networks among recommender systems have been proved beneficial to improve the quality and number of predictions. This paper proposes an improved trust-aware recommender system that uses resistive circuits for trust inference. This method uses trust information to produce personalized recommendations. The result of evaluating the proposed method on Epinions dataset shows that this method can significantly improve the accuracy of recommender systems while not reducing the coverage of recommender systems.


Author(s):  
H. Inbarani ◽  
K. Thangavel

The technology behind personalization or Web page recommendation has undergone tremendous changes, and several Web-based personalization systems have been proposed in recent years. The main goal of Web personalization is to dynamically recommend Web pages based on online behavior of users. Although personalization can be accomplished in numerous ways, most Web personalization techniques fall into four major categories: decision rule-based filtering, content-based filtering, and collaborative filtering and Web usage mining. Decision rule-based filtering reviews users to obtain user demographics or static profiles, and then lets Web sites manually specify rules based on them. It delivers the appropriate content to a particular user based on the rules. However, it is not particularly useful because it depends on users knowing in advance the content that interests them. Content-based filtering relies on items being similar to what a user has liked previously. Collaborative filtering, also called social or group filtering, is the most successful personalization technology to date. Most successful recommender systems on the Web typically use explicit user ratings of products or preferences to sort user profile information into peer groups. It then tells users what products they might want to buy by combining their personal preferences with those of like-minded individuals. However, collaborative filtering has limited use for a new product that no one has seen or rated, and content-based filtering to obtain user profiles might miss novel or surprising information. Additionally, traditional Web personalization techniques, including collaborative or content-based filtering, have other problems, such as reliance on subject user ratings and static profiles or the inability to capture richer semantic relationships among Web objects. To overcome these shortcomings, the new Web personalization tool, nonintrusive personalization, attempts to increasingly incorporate Web usage mining techniques. Web usage mining can help improve the scalability, accuracy, and flexibility of recommender systems. Thus, Web usage mining can reduce the need for obtaining subjective user ratings or registration-based personal preferences. This chapter provides a survey of Web usage mining approaches.


Author(s):  
Zahra Bahramian ◽  
Rahim Ali Abbaspour ◽  
Christophe Claramunt

Tourism activities are highly dependent on spatial information. Finding the most interesting travel destinations and attractions and planning a trip are still open research issues to GIScience research applied to the tourism domain. Nowadays, huge amounts of information are available over the world wide web that may be useful in planning a visit to destinations and attractions. However, it is often time consuming for a user to select the most interesting destinations and attractions and plan a trip according to his own preferences. Tourism recommender systems (TRSs) can be used to overcome this information overload problem and to propose items taking into account the user preferences. This chapter reviews related topics in tourism recommender systems including different tourism recommendation approaches and user profile representation methods applied in the tourism domain. The authors illustrate the potential of tourism recommender systems as applied to the tourism domain by the implementation of an illustrative geospatial collaborative recommender system using the Foursquare dataset.


2013 ◽  
Vol 475-476 ◽  
pp. 1084-1089
Author(s):  
Hui Yuan Chang ◽  
Ding Xia Li ◽  
Qi Dong Liu ◽  
Rong Jing Hu ◽  
Rui Sheng Zhang

Recommender systems are widely employed in many fields to recommend products, services and information to potential customers. As the most successful approach to recommender systems, collaborative filtering (CF) predicts user preferences in item selection based on the known user ratings of items. It can be divided into two main braches - the neighbourhood approach (NB) and latent factor models. Some of the most successful realizations of latent factor models are based on matrix factorization (MF). Accuracy is one of the most important measurement criteria for recommender systems. In this paper, to improve accuracy, we propose an improved MF model. In this model, we not only consider the latent factors describing the user and item, but also incorporate content information directly into MF.Experiments are performed on the Movielens dataset to compare the present approach with the other method. The experiment results indicate that the proposed approach can remarkably improve the recommendation quality.


Author(s):  
Faiz Maazouzi ◽  
Hafed Zarzour ◽  
Yaser Jararweh

With the enormous amount of information circulating on the Web, it is becoming increasingly difficult to find the necessary and useful information quickly and efficiently. However, with the emergence of recommender systems in the 1990s, reducing information overload became easy. In the last few years, many recommender systems employ the collaborative filtering technology, which has been proven to be one of the most successful techniques in recommender systems. Nowadays, the latest generation of collaborative filtering methods still requires further improvements to make the recommendations more efficient and accurate. Therefore, the objective of this article is to propose a new effective recommender system for TED talks that first groups users according to their preferences, and then provides a powerful mechanism to improve the quality of recommendations for users. In this context, the authors used the Pearson Correlation Coefficient (PCC) method and TED talks to create the TED user-user matrix. Then, they used the k-means clustering method to group the same users in clusters and create a predictive model. Finally, they used this model to make relevant recommendations to other users. The experimental results on real dataset show that their approach significantly outperforms the state-of-the-art methods in terms of RMSE, precision, recall, and F1 scores.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Biao Cai ◽  
Xiaowang Yang ◽  
Yusheng Huang ◽  
Hongjun Li ◽  
Qiang Sang

Recommendation systems are used when searching online databases. As such they are very important tools because they provide users with predictions of the outcomes of different potential choices and help users to avoid information overload. They can be used on e-commerce websites and have attracted considerable attention in the scientific community. To date, many personalized recommendation algorithms have aimed to improve recommendation accuracy from the perspective of vertex similarities, such as collaborative filtering and mass diffusion. However, diversity is also an important evaluation index in the recommendation algorithm. In order to study both the accuracy and diversity of a recommendation algorithm at the same time, this study introduced a “third dimension” to the commonly used user/product two-dimensional recommendation, and a recommendation algorithm is proposed that is based on a triangular area (TR algorithm). The proposed algorithm combines the Markov chain and collaborative filtering method to make recommendations for users by building a triangle model, making use of the triangulated area. Additionally, recommendation algorithms based on a triangulated area are parameter-free and are more suitable for applications in real environments. Furthermore, the experimental results showed that the TR algorithm had better performance on diversity and novelty for real datasets of MovieLens-100K and MovieLens-1M than did the other benchmark methods.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250001
Author(s):  
GEORGIOS ALEXANDRIDIS ◽  
GEORGIOS SIOLAS ◽  
ANDREAS STAFYLOPATIS

Most recommender systems have too many items to propose to too many users based on limited information. This problem is formally known as the sparsity of the ratings' matrix, because this is the structure that holds user preferences. This paper outlines a Collaborative Filtering Recommender System that tries to amend this situation. After applying Singular Value Decomposition to reduce the dimensionality of the data, our system makes use of a dynamic Artificial Neural Network architecture with boosted learning to predict user ratings. Furthermore we use the concept of k-separability to deal with the resulting noisy data, a methodology not yet tested in Recommender Systems. The combination of these techniques applied to the MovieLens datasets seems to yield promising results.


Author(s):  
Muhammad Jabbar ◽  
Qaisar Javaid ◽  
Muhammad Arif ◽  
Asim Munir ◽  
Ali Javed

Recommender Systems are valuable tools to deal with the problem of overloaded information faced by most of the users in case of making purchase decision to buy any item. Recommender systems are used to provide recommendations in many domains such as movies, books, digital equipment’s, etc. The massive collection of available books online presents a great challenge for users to select the relevant books that meet their preferences. Users usually read few pages or contents to decide whether to buy a certain book or not. Recommender systems provide different value addition factors such as similar user ratings, users past history, user profiles, etc. to facilitate the users in terms of providing relevant recommendations according to their preferences. Recommender systems are broadly categorized into content based approach and collaborative filtering approach. Content based or collaborative filtering approaches alone are not sufficient to provide most accurate and relevant recommendations under diverse scenarios. Therefore, hybrid approaches are also designed by combining the features of both the content based and collaborative filtering approaches to provide more relevant recommendations. This paper proposes an efficient hybrid recommendation scheme for mobile platform that includes the traits of content based and collaborative filtering approaches in addition of the context based approach that is included to provide the latest books recommendations to user.Objective and subjective evaluation measures are used to compute the performance of the proposed system. Experimental results are promising and signify the effectiveness of our proposed hybrid scheme in terms of most relevant and latest books recommendations.


Sign in / Sign up

Export Citation Format

Share Document