scholarly journals A Time-Aware Hybrid Approach for Intelligent Recommendation Systems for Individual and Group Users

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zhao Huang ◽  
Pavel Stakhiyevich

Although personal and group recommendation systems have been quickly developed recently, challenges and limitations still exist. In particular, users constantly explore new items and change their preferences throughout time, which causes difficulties in building accurate user profiles and providing precise recommendation outcomes. In this context, this study addresses the time awareness of the user preferences and proposes a hybrid recommendation approach for both individual and group recommendations to better meet the user preference changes and thus improve the recommendation performance. The experimental results show that the proposed approach outperforms several baseline algorithms in terms of precision, recall, novelty, and diversity, in both personal and group recommendations. Moreover, it is clear that the recommendation performance can be largely improved by capturing the user preference changes in the study. These findings are beneficial for increasing the understanding of the user dynamic preference changes in building more precise user profiles and expanding the knowledge of developing more effective and efficient recommendation systems.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hongzhi Li ◽  
Dezhi Han

Nowadays, recommender systems are used widely in various fields to solve the problem of information overload. Collaborative filtering and content-based models are representative solutions in recommender systems; however, the content-based model has some shortcomings, such as single kind of recommendation results and lack of effective perception of user preferences, while for the collaborative filtering model, there is a cold start problem, and such a model is greatly affected by its adopted clustering algorithm. To address these issues, a hybrid recommendation scheme is proposed in this paper, which is based on both collaborative filtering and content-based. In this scheme, we propose the concept of time impact factor, and a time-aware user preference model is built based on it. Also, user feedback on recommendation items is utilized to improve the accuracy of our proposed recommendation model. Finally, the proposed hybrid model combines the results of content recommendation and collaborative filtering based on the logistic regression algorithm.


2021 ◽  
pp. 1063293X2110195
Author(s):  
Ying Yu ◽  
Shan Li ◽  
Jing Ma

Selecting the most efficient from several functionally equivalent services remains an ongoing challenge. Most manufacturing service selection methods regard static quality of service (QoS) as a major competitiveness factor. However, adaptations are difficult to achieve when variable network environment has significant impact on QoS performance stabilization in complex task processes. Therefore, dynamic temporal QoS values rather than fixed values are gaining ground for service evaluation. User preferences play an important role when service demanders select personalized services, and this aspect has been poorly investigated for temporal QoS-aware cloud manufacturing (CMfg) service selection methods. Furthermore, it is impractical to acquire all temporal QoS values, which affects evaluation validity. Therefore, this paper proposes a time-aware CMfg service selection approach to address these issues. The proposed approach first develops an unknown-QoS prediction model by utilizing similarity features from temporal QoS values. The model considers QoS attributes and service candidates integrally, helping to predict multidimensional QoS values accurately and easily. Overall QoS is then evaluated using a proposed temporal QoS measuring algorithm which can self-adapt to user preferences. Specifically, we employ the temporal QoS conflict feature to overcome one-sided user preferences, which has been largely overlooked previously. Experimental results confirmed that the proposed approach outperformed classical time series prediction methods, and can also find better service by reducing user preference misjudgments.


Author(s):  
ChunYan Yin ◽  
YongHeng Chen ◽  
Wanli Zuo

AbstractPreference-based recommendation systems analyze user-item interactions to reveal latent factors that explain our latent preferences for items and form personalized recommendations based on the behavior of others with similar tastes. Most of the works in the recommendation systems literature have been developed under the assumption that user preference is a static pattern, although user preferences and item attributes may be changed through time. To achieve this goal, we develop an Evolutionary Social Poisson Factorization (EPF$$\_$$ _ Social) model, a new Bayesian factorization model that can effectively model the smoothly drifting latent factors using Conjugate Gamma–Markov chains. Otherwise, EPF$$\_$$ _ Social can obtain the impact of friends on social network for user’ latent preferences. We studied our models with two large real-world datasets, and demonstrated that our model gives better predictive performance than state-of-the-art static factorization models.


Author(s):  
Mohammed Erritali ◽  
Badr Hssina ◽  
Abdelkader Grota

<p>Recommendation systems are used successfully to provide items (example:<br />movies, music, books, news, images) tailored to user preferences.<br />Among the approaches proposed, we use the collaborative filtering approach<br />of finding the information that satisfies the user by using the<br />reviews of other users. These ratings are stored in matrices that their<br />sizes increase exponentially to predict whether an item is interesting<br />or not. The problem is that these systems overlook that an assessment<br />may have been influenced by other factors which we call the cold start<br />factor. Our objective is to apply a hybrid approach of recommendation<br />systems to improve the quality of the recommendation. The advantage<br />of this approach is the fact that it does not require a new algorithm<br />for calculating the predictions. We we are going to apply the two Kclosest<br />neighbor algorithms and the matrix factorization algorithm of<br />collaborative filtering which are based on the method of (singular value<br />decomposition).</p>


Author(s):  
Maitri Jhaveri ◽  
Jyoti Pareek

The last decade met a remarkable proliferation of P2P networks, PDMS, semantic web, communitarian websites, electronic stores, etc. resulting in an overload of available information. One of the solutions to this information overload problem is using efficient tools such as the recommender system which is a personalization system that helps users to find items of interest based on their preferences. Several such recommendation engines do exist under different domains. However these recommendation systems are not very effective due to several issues like lack of data, changing data, changing user preferences, and unpredictable items. This paper proposes a novel model of Recommendation systems in e-commerce domain which will address issues of cold start problem and change in user preference problem. This model is based on studying implicit negative feedback from users in cross domain collaborative environment to identify user preferences effectively. The authors have also identified a list of parameters for this study.


Author(s):  
Xu Chen ◽  
Yongfeng Zhang ◽  
Zheng Qin

Providing explanations in a recommender system is getting more and more attention in both industry and research communities. Most existing explainable recommender models regard user preferences as invariant to generate static explanations. However, in real scenarios, a user’s preference is always dynamic, and she may be interested in different product features at different states. The mismatching between the explanation and user preference may degrade costumers’ satisfaction, confidence and trust for the recommender system. With the desire to fill up this gap, in this paper, we build a novel Dynamic Explainable Recommender (called DER) for more accurate user modeling and explanations. In specific, we design a time-aware gated recurrent unit (GRU) to model user dynamic preferences, and profile an item by its review information based on sentence-level convolutional neural network (CNN). By attentively learning the important review information according to the user current state, we are not only able to improve the recommendation performance, but also can provide explanations tailored for the users’ current preferences. We conduct extensive experiments to demonstrate the superiority of our model for improving recommendation performance. And to evaluate the explainability of our model, we first present examples to provide intuitive analysis on the highlighted review information, and then crowd-sourcing based evaluations are conducted to quantitatively verify our model’s superiority.


The term Recommender system is described as any organization that provides personalized suggestions as a result and it effects the user in the individualized way to favorable items from the large number of opinions. The voluminous inflation of the reachable data online and also the number of users have lead to the information overload problem. To overcome this problem the recommender system came into play as it is able to prioritize and personalize the data. Recommendation systems have developed alongside with the net. Recommender system has mainly three data filtering methods such as content based filtering technique, collaborative based filtering technique and the hybrid approach to manage the data overload problem and to recommends the items to the user the items they are interested in from the dynamically generated data. This paper makes a comprehensive introduction to the recommender system with its types, content based filtering , collaborative filtering and the hybrid recommendation.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1611
Author(s):  
María Cora Urdaneta-Ponte ◽  
Amaia Mendez-Zorrilla ◽  
Ibon Oleagordia-Ruiz

Recommendation systems have emerged as a response to overload in terms of increased amounts of information online, which has become a problem for users regarding the time spent on their search and the amount of information retrieved by it. In the field of recommendation systems in education, the relevance of recommended educational resources will improve the student’s learning process, and hence the importance of being able to suitably and reliably ensure relevant, useful information. The purpose of this systematic review is to analyze the work undertaken on recommendation systems that support educational practices with a view to acquiring information related to the type of education and areas dealt with, the developmental approach used, and the elements recommended, as well as being able to detect any gaps in this area for future research work. A systematic review was carried out that included 98 articles from a total of 2937 found in main databases (IEEE, ACM, Scopus and WoS), about which it was able to be established that most are geared towards recommending educational resources for users of formal education, in which the main approaches used in recommendation systems are the collaborative approach, the content-based approach, and the hybrid approach, with a tendency to use machine learning in the last two years. Finally, possible future areas of research and development in this field are presented.


2021 ◽  
Vol 11 (12) ◽  
pp. 5416
Author(s):  
Yanheng Liu ◽  
Minghao Yin ◽  
Xu Zhou

The purpose of POI group recommendation is to generate a recommendation list of locations for a group of users. Most of the current studies first conduct personal recommendation and then use recommendation strategies to integrate individual recommendation results. Few studies consider the divergence of groups. To improve the precision of recommendations, we propose a POI group recommendation method based on collaborative filtering with intragroup divergence in this paper. Firstly, user preference vector is constructed based on the preference of the user on time and category. Furthermore, a computation method similar to TF-IDF is presented to compute the degree of preference of the user to the category. Secondly, we establish a group feature preference model, and the similarity of the group and other users’ feature preference is obtained based on the check-ins. Thirdly, the intragroup divergence of POIs is measured according to the POI preference of group members and their friends. Finally, the preference rating of the group for each location is calculated based on a collaborative filtering method and intragroup divergence computation, and the top-ranked score of locations are the recommendation results for the group. Experiments have been conducted on two LBSN datasets, and the experimental results on precision and recall show that the performance of the proposed method is superior to other methods.


2021 ◽  
Vol 11 (3) ◽  
pp. 1064
Author(s):  
Jenq-Haur Wang ◽  
Yen-Tsang Wu ◽  
Long Wang

In social networks, users can easily share information and express their opinions. Given the huge amount of data posted by many users, it is difficult to search for relevant information. In addition to individual posts, it would be useful if we can recommend groups of people with similar interests. Past studies on user preference learning focused on single-modal features such as review contents or demographic information of users. However, such information is usually not easy to obtain in most social media without explicit user feedback. In this paper, we propose a multimodal feature fusion approach to implicit user preference prediction which combines text and image features from user posts for recommending similar users in social media. First, we use the convolutional neural network (CNN) and TextCNN models to extract image and text features, respectively. Then, these features are combined using early and late fusion methods as a representation of user preferences. Lastly, a list of users with the most similar preferences are recommended. The experimental results on real-world Instagram data show that the best performance can be achieved when we apply late fusion of individual classification results for images and texts, with the best average top-k accuracy of 0.491. This validates the effectiveness of utilizing deep learning methods for fusing multimodal features to represent social user preferences. Further investigation is needed to verify the performance in different types of social media.


Sign in / Sign up

Export Citation Format

Share Document