scholarly journals User-Involved Preference Elicitation for Product Search and Recommender Systems

AI Magazine ◽  
2008 ◽  
Vol 29 (4) ◽  
pp. 93 ◽  
Author(s):  
Pearl Pu ◽  
Li Chen

We address user system interaction issues in product search and recommender systems: how to help users select the most preferential item from a large collection of alternatives. As such systems must crucially rely on an accurate and complete model of user preferences, the acquisition of this model becomes the central subject of our paper. Many tools used today do not satisfactorily assist users to establish this model because they do not adequately focus on fundamental decision objectives, help them reveal hidden preferences, revise conflicting preferences, or explicitly reason about tradeoffs. As a result, users fail to find the outcomes that best satisfy their needs and preferences. In this article, we provide some analyses of common areas of design pitfalls and derive a set of design guidelines that assist the user in avoiding these problems in three important areas: user preference elicitation, preference revision, and explanation interfaces. For each area, we describe the state-of-the-art of the developed techniques and discuss concrete scenarios where they have been applied and tested.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5248
Author(s):  
Aleksandra Pawlicka ◽  
Marek Pawlicki ◽  
Rafał Kozik ◽  
Ryszard S. Choraś

This paper discusses the valuable role recommender systems may play in cybersecurity. First, a comprehensive presentation of recommender system types is presented, as well as their advantages and disadvantages, possible applications and security concerns. Then, the paper collects and presents the state of the art concerning the use of recommender systems in cybersecurity; both the existing solutions and future ideas are presented. The contribution of this paper is two-fold: to date, to the best of our knowledge, there has been no work collecting the applications of recommenders for cybersecurity. Moreover, this paper attempts to complete a comprehensive survey of recommender types, after noticing that other works usually mention two–three types at once and neglect the others.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaoyuan Su ◽  
Taghi M. Khoshgoftaar

As one of the most successful approaches to building recommender systems, collaborative filtering (CF) uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. In this paper, we first introduce CF tasks and their main challenges, such as data sparsity, scalability, synonymy, gray sheep, shilling attacks, privacy protection, etc., and their possible solutions. We then present three main categories of CF techniques: memory-based, model-based, and hybrid CF algorithms (that combine CF with other recommendation techniques), with examples for representative algorithms of each category, and analysis of their predictive performance and their ability to address the challenges. From basic techniques to the state-of-the-art, we attempt to present a comprehensive survey for CF techniques, which can be served as a roadmap for research and practice in this area.


Algorithms ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 176
Author(s):  
Amin Beheshti ◽  
Shahpar Yakhchi ◽  
Salman Mousaeirad ◽  
Seyed Mohssen Ghafari ◽  
Srinivasa Reddy Goluguri ◽  
...  

Intelligence is the ability to learn from experience and use domain experts’ knowledge to adapt to new situations. In this context, an intelligent Recommender System should be able to learn from domain experts’ knowledge and experience, as it is vital to know the domain that the items will be recommended. Traditionally, Recommender Systems have been recognized as playlist generators for video/music services (e.g., Netflix and Spotify), e-commerce product recommenders (e.g., Amazon and eBay), or social content recommenders (e.g., Facebook and Twitter). However, Recommender Systems in modern enterprises are highly data-/knowledge-driven and may rely on users’ cognitive aspects such as personality, behavior, and attitude. In this paper, we survey and summarize previously published studies on Recommender Systems to help readers understand our method’s contributions to the field in this context. We discuss the current limitations of the state of the art approaches in Recommender Systems and the need for our new approach: A vision and a general framework for a new type of data-driven, knowledge-driven, and cognition-driven Recommender Systems, namely, Cognitive Recommender Systems. Cognitive Recommender Systems will be the new type of intelligent Recommender Systems that understand the user’s preferences, detect changes in user preferences over time, predict user’s unknown favorites, and explore adaptive mechanisms to enable intelligent actions within the compound and changing environments. We present a motivating scenario in banking and argue that existing Recommender Systems: (i) do not use domain experts’ knowledge to adapt to new situations; (ii) may not be able to predict the ratings or preferences a customer would give to a product (e.g., loan, deposit, or trust service); and (iii) do not support data capture and analytics around customers’ cognitive activities and use it to provide intelligent and time-aware recommendations.


2017 ◽  
Vol 7 (1) ◽  
pp. 1-16
Author(s):  
Madhuri A. Potey ◽  
Pradeep K. Sinha

Search engine technologies are evolving to satisfy the user's ever increasing information need; but are yet to achieve perfection especially in ranking. With the exponential growth in the available information on the internet; ranking has become vital for satisfactory search experience. User satisfaction can be ensured to some extent by personalizing the search results based on user preferences which can be explicitly stated or learned from user's search behavior. Machine learning algorithms which predict user preference from the available information related to the user are extensively experimented for personalization. Among several studies undertaken for re-ranking the documents, many focus on the user. Such approaches create user model to capture the search context and behavior. This study attempts to analyze the research trends in user model based personalization and discuss experimental results in personalized information retrieval area. The authors experimented to extend the state of the art in the specific areas of personalization.


i-com ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Peter Grasch ◽  
Alexander Felfernig

AbstractConversational recommender systems have been shown capable of allowing users to navigate even complex and unknown application domains effectively. However, optimizing preference elicitation remains a largely unsolved problem. In this paper we introduce SPEECHREC, a speech-enabled, knowledge-based recommender system, that engages the user in a natural-language dialog, identifying not only purely factual constraints from the users’ input, but also integrating nuanced lexical qualifiers and paralinguistic information into the recommendation strategy. In order to assess the viability of this concept, we present the results of an empirical study where we compare SPEECHREC to a traditional knowledge-based recommender system and show how incorporating more granular user preferences in the recommendation strategy can increase recommendation quality, while reducing median session length by 46 %.


Data ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 18
Author(s):  
Deepani B. Guruge ◽  
Rajan Kadel ◽  
Sharly J. Halder

In recent years, education institutions have offered a wide range of course selections with overlaps. This presents significant challenges to students in selecting successful courses that match their current knowledge and personal goals. Although many studies have been conducted on Recommender Systems (RS), a review of methodologies used in course RS is still insufficiently explored. To fill this literature gap, this paper presents the state of the art of methodologies used in course RS along with the summary of the types of data sources used to evaluate these techniques. This review aims to recognize emerging trends in course RS techniques in recent research literature to deliver insights for researchers for further investigation. We provide a systematic review process followed by research findings on the current methodologies implemented in different course RS in selected research journals such as: collaborative, content-based, knowledge-based, Data Mining (DM), hybrid, statistical and Conversational RS (CRS). This study analyzed publications between 2016 and June 2020, in three repositories; IEEE Xplore, ACM, and Google Scholar. These papers were explored and classified based on the methodology used in recommending courses. This review has revealed that there is a growing popularity in hybrid course RS and followed by DM techniques in recent publications. However, few CRS-based course RS were present in the selected publications. Finally, we discussed future avenues based on the research outcome, which might lead to next-generation course RS.


Sign in / Sign up

Export Citation Format

Share Document