scholarly journals Huaier Extract Attenuates Acute Kidney Injury to Chronic Kidney Disease Transition by Inhibiting Endoplasmic Reticulum Stress and Apoptosis via miR-1271 Upregulation

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jing-Ying Zhao ◽  
Yu-Bin Wu

Endoplasmic reticulum stress (ERS) is strongly associated with acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Huaier extract (HE) protects against kidney injury; albeit, the underlying mechanism is unknown. We hypothesized that HE reduces kidney injury by inhibiting ERS. In this study, using an AKI-CKD mouse model of ischemia-reperfusion injury (IRI), we evaluated the effect of HE on AKI-CKD transition. We also explored the underlying molecular mechanisms in this animal model and in the HK-2 human kidney cell line. The results showed that HE treatment improved the renal function, demonstrated by a significant decrease in serum creatinine levels after IRI. HE appreciably reduced the degree of kidney injury and fibrosis and restored the expression of the microRNA miR-1271 after IRI. Furthermore, HE reduced the expression of ERS markers glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) and inhibited apoptosis in the IRI group. This in vivo effect was supported by in vitro results in which HE inhibited apoptosis and decreased the expression of CHOP and GRP78 induced by ERS. We demonstrated that CHOP is a target of miR-1271. In conclusion, HE reduces kidney injury, probably by inhibiting apoptosis and decreasing the expression of GRP78 and CHOP via miR-1271 upregulation.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Hong ◽  
Yanni Zhou ◽  
Dedong Wang ◽  
Fuping Lyu ◽  
Tianjun Guan ◽  
...  

Studies suggest that Wnt/β-catenin agonists are beneficial in the treatment of acute kidney injury (AKI); however, it remains elusive about its role in the prevention of AKI and its progression to chronic kidney disease (CKD). In this study, renal Wnt/β-catenin signaling was either activated by overexpression of exogenous Wnt1 or inhibited by administration with ICG-001, a small molecule inhibitor of β-catenin signaling, before mice were subjected to ischemia/reperfusion injury (IRI) to induce AKI and subsequent CKD. Our results showed that in vivo expression of exogenous Wnt1 before IR protected mice against AKI, and impeded the progression of AKI to CKD in mice, as evidenced by both blood biochemical and kidney histological analyses. In contrast, pre-treatment of ICG-001 before IR had no effect on renal Wnt/β-catenin signaling or the progression of AKI to CKD. Mechanistically, in vivo expression of exogenous Wnt1 before IR suppressed the expression of proapoptotic proteins in AKI mice, and reduced inflammatory responses in both AKI and CKD mice. Additionally, exogenous Wnt1 inhibited apoptosis of tubular cells induced by hypoxia-reoxygenation (H/R) treatment in vitro. To conclude, the present study provides evidences to support the preventive effect of Wnt/β-catenin activation on IR-related AKI and its subsequent progression to CKD.


2020 ◽  
Vol 318 (6) ◽  
pp. F1531-F1538
Author(s):  
Ye Zhang ◽  
Jian-Jian Zhang ◽  
Xiu-Heng Liu ◽  
Lei Wang

Renal ischemia-reperfusion injury (I/R) usually occurs in renal transplantation and partial nephrectomy, which could lead to acute kidney injury. However, the effective treatment for renal I/R still remains limited. In the present study, we investigated whether inhibition of chromobox 7 (CBX7) could attenuate renal I/R injury in vivo and in vitro as well as the potential mechanisms. Adult male mice were subjected to right renal ischemia and reperfusion for different periods, both with and without the CBX7 inhibitor UNC3866. In addition, human kidney cells (HK-2) were subjected to a hypoxia/reoxygenation (H/R) process for different periods, both with or without the CBX7 inhibitor or siRNA for CBX7. The results showed that expression of CBX7, glucose regulator protein-78 (GRP78), phosphorylated eukaryotic translation initiation factor-2α (p-eIF2α), and C/EBP homologous protein (CHOP) were increased after extension of I/R and H/R periods. Moreover, overexpression of CBX7 could elevate the expression of CBX7, GRP78, p-eIF2α, and CHOP. However, CBX7 inhibition with either UNC3866 or genetic knockdown led to reduced expression of GRP78, p-eIF2α, and CHOP through nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 activation in I/R and H/R injury. Furthermore, ML385, the Nrf2 inhibitor, could elevate endoplasmic reticulum stress levels, abrogating the protective effects of UNC3866 against renal I/R injury. In conclusion, our results demonstrated that CBX7 inhibition alleviated acute kidney injury by preventing endoplasmic reticulum stress via the Nrf2/HO-1 pathway, indicating that CBX7 inhibitor could be a potential therapeutic target for renal I/R injury.


2019 ◽  
Vol 317 (2) ◽  
pp. F286-F295 ◽  
Author(s):  
Jin Wei ◽  
Jie Zhang ◽  
Lei Wang ◽  
Shan Jiang ◽  
Liying Fu ◽  
...  

Acute kidney injury (AKI) significantly increases the risk of development of chronic kidney disease (CKD), which is closely associated with the severity of AKI. However, the underlying mechanisms for the AKI to CKD transition remain unclear. Several animal models with AKI to CKD transition have been generated and widely used in research; however, none of them exhibit the typical changes in glomerular filtration rate or plasma creatinine, the hallmarks of CKD. In the present study, we developed a novel model with a typical phenotype of AKI to CKD transition in C57BL/6 mice. In this model, life-threatening ischemia-reperfusion injury was performed in one kidney, whereas the contralateral kidney was kept intact to maintain animal survival; then, after 2 wk of recovery, when the renal function of the injured kidney restored above the survival threshold, the contralateral intact kidney was removed. Animals of this two-stage unilateral ischemia-reperfusion injury model with pedicle clamping of 21 and 24 min exhibited an incomplete recovery from AKI and subsequent progression of CKD with characteristics of a progressive decline in glomerular filtration rate, increase in plasma creatinine, worsening of proteinuria, and deleterious histopathological changes, including interstitial fibrosis and glomerulosclerosis. In conclusion, a new model of the AKI to CKD transition was generated in C57BL/6 mice.


Nephron ◽  
2021 ◽  
pp. 1-11
Author(s):  
Xiangnan Dong ◽  
Rui Cao ◽  
Qiang Li ◽  
Lianghong Yin

<b><i>Introduction:</i></b> Long noncoding RNAs (lncRNAs) have been reported to be involved in the occurrence and development of various diseases. This study was to investigate the role of lncRNA-H19 in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) and its underlying mechanism. <b><i>Methods:</i></b> Bilateral renal pedicle ischemia-reperfusion injury (IRI) was used to establish the IRI-AKI model in C57BL/6 mice. The expression levels of lncRNA-H19, miR-196a-5p, α-SMA, collagen I, Wnt1, and β-catenin in mouse kidney tissues and fibroblasts were determined by quantitative real-time PCR and Western blotting. The degree of renal fibrosis was evaluated by hematoxylin and eosin staining. The interaction between lncRNA-H19 and miR-196a-5p was verified by bioinformatics analysis and luciferase reporter assay. Immunohistochemistry and immunofluorescence were used to evaluate the expression of α-SMA and collagen I in kidney tissues and fibroblasts of mice. <b><i>Results:</i></b> lncRNA-H19 is upregulated, and miR-196a-5p is downregulated in kidney tissues of IRI mice. Moreover, miR-196a-5p is a direct target of lncRNA-H19. lncRNA-H19 overexpression promotes kidney fibrosis and activates fibroblasts during AKI-CKD development, while miR-196a-5p overexpression reversed these effects in vitro. Furthermore, lncRNA-H19 overexpression significantly upregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice, while miR-196a-5p overexpression downregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice. <b><i>Conclusion:</i></b> lncRNA-H19 induces kidney fibrosis during AKI-CKD by regulating the miR-196a-5p/Wnt/β-catenin signaling pathway.


2019 ◽  
Vol 317 (4) ◽  
pp. F1068-F1080 ◽  
Author(s):  
Lauren Scarfe ◽  
Anna Menshikh ◽  
Emily Newton ◽  
Yuantee Zhu ◽  
Rachel Delgado ◽  
...  

Severe acute kidney injury has a high mortality and is a risk factor for progressive chronic kidney disease. None of the potential therapies that have been identified in preclinical studies have successfully improved clinical outcomes. This failure is partly because animal models rarely reflect the complexity of human disease: most preclinical studies are short term and are commonly performed in healthy, young, male mice. Therapies that are effective in preclinical models that share common clinical features seen in patients with acute kidney injury, including genetic diversity, different sexes, and comorbidities, and evaluate long-term outcomes are more likely to predict success in the clinic. Here, we evaluated susceptibility to chronic kidney disease after ischemia-reperfusion injury with delayed nephrectomy by monitoring long-term functional and histological responses to injury. We defined conditions required to induce long-term postinjury renal dysfunction and fibrosis without increased mortality in a reproducible way and evaluate effect of mouse strains, sexes, and preexisting diabetes on these responses.


2021 ◽  
Author(s):  
Lilin Li ◽  
Jeonghwan Lee ◽  
Ara Cho ◽  
Jin Hyuk Kim ◽  
Wonmin Ju ◽  
...  

We aimed to investigate the role of cMet agonistic antibody (cMet Ab) in preventing kidney fibrosis during acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Additionally, we explored the effect of cMet Ab on TGF-β1/Smad pathway during the pathogenesis of kidney fibrosis. A unilateral ischemia-reperfusion injury (UIRI) mouse model was established to induce AKI-to-CKD transition. Furthermore, we incubated human proximal tubular epithelial cells under hypoxic conditions as in vitro model of kidney fibrosis. We analyzed the soluble plasma cMet level in patients with AKI requiring dialysis. Patients who did not recover kidney function and progressed to CKD presented a higher increase in the cMet level. The kidneys of mice treated with cMet Ab showed fewer contractions and weighed more than the controls. The mice in the cMet Ab-treated group showed reduced fibrosis and significantly decreased expression of fibronectin and α-smooth muscle actin. cMet Ab treatment decreased inflammatory marker (MCP-1, TNF-α, and IL-1β) expression, reduced Smurf1 and Smad2/3 level, and increased Smad7 expressions. cMet Ab treatment increased cMet expression and reduced the hypoxia-induced increase in collagen-1 and ICAM-1 expression, thereby reducing apoptosis in the in vitro cell model. After cMet Ab treatment, hypoxia-induced expression of Smurf1, Smad2/3, and TGF-β1 was reduced, and suppressed Smad7 was activated. Down-regulation of Smurf1 resulted in suppression of hypoxia-induced fibronectin expression, whereas treatment with cMet Ab showed synergistic effects. cMet Ab can successfully prevent fibrosis response in UIRI models of kidney fibrosis by decreasing inflammatory response and inhibiting the TGF-β1/Smad pathway.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhihuang Zheng ◽  
Kexin Xu ◽  
Chuanlei Li ◽  
Chenyang Qi ◽  
Yili Fang ◽  
...  

AbstractNod-like receptor protein 3 (NLRP3), as an inflammatory regulator, has been implicated in acute kidney injury (AKI). Failed recovery after AKI can lead to chronic kidney disease (CKD). However, the role of NLRP3 in the AKI-CKD transition is still unknown. A mild or severe AKI mouse model was performed by using ischemia-reperfusion injury (IRI). We evaluated the renal NLRP3 expression in acute and chronic phases of ischemic AKI, respectively. Although serum creatinine (Cr) and blood urea nitrogen (BUN) levels in AKI chronic phase were equivalent to normal baseline, histological analysis and fibrotic markers revealed that severe AKI-induced maladaptive tubular repair with immune cell infiltration and fibrosis. Tubular damage was restored completely in mild AKI rather than in severe AKI. Of note, persistent overexpression of NLRP3 was also found in severe AKI but not in mild AKI. In the severe AKI-induced chronic phase, there was a long-term high level of NLRP3 in serum or urine. Overt NLRP3 was mainly distributed in the abnormal tubules surrounded by inflammatory infiltrates and fibrosis, which indicated the maladaptive repair. Renal Nlrp3 overexpression was correlated with infiltrating macrophages and fibrosis. Renal NLRP3 signaling-associated genes were upregulated after severe AKI by RNA-sequencing. Furthermore, NLRP3 was found increased in renal tubular epitheliums from CKD biopsies. Together, persistent NLRP3 overexpression was associated with chronic pathological changes following AKI, which might be a new biomarker for evaluating the possibility of AKI-CKD transition.


2017 ◽  
Vol 114 (47) ◽  
pp. 12608-12613 ◽  
Author(s):  
Bing-Qing Deng ◽  
Ying Luo ◽  
Xin Kang ◽  
Chang-Bin Li ◽  
Christophe Morisseau ◽  
...  

Acute kidney injury (AKI) causes severe morbidity and mortality for which new therapeutic strategies are needed. Docosahexaenoic acid (DHA), arachidonic acid (ARA), and their metabolites have various effects in kidney injury, but their molecular mechanisms are largely unknown. Here, we report that 14 (15)-epoxyeicosatrienoic acid [14 (15)-EET] and 19 (20)-epoxydocosapentaenoic acid [19 (20)-EDP], the major epoxide metabolites of ARA and DHA, respectively, have contradictory effects on kidney injury in a murine model of ischemia/reperfusion (I/R)-caused AKI. Specifically, 14 (15)-EET mitigated while 19 (20)-EDP exacerbated I/R kidney injury. Manipulation of the endogenous 19 (20)-EDP or 14 (15)-EET by alteration of their degradation or biosynthesis with selective inhibitors resulted in anticipated effects. These observations are supported by renal histological analysis, plasma levels of creatinine and urea nitrogen, and renal NGAL. The 14 (15)-EET significantly reversed the I/R-caused reduction in glycogen synthase kinase 3β (GSK3β) phosphorylation in murine kidney, dose-dependently inhibited the hypoxia/reoxygenation (H/R)-caused apoptosis of murine renal tubular epithelial cells (mRTECs), and reversed the H/R-caused reduction in GSK3β phosphorylation in mRTECs. In contrast, 19 (20)-EDP dose-dependently promoted H/R-caused apoptosis and worsened the reduction in GSK3β phosphorylation in mRTECs. In addition, 19 (20)-EDP was more metabolically stable than 14 (15)-EET in vivo and in vitro. Overall, these epoxide metabolites of ARA and DHA function conversely in I/R-AKI, possibly through their largely different metabolic stability and their opposite effects in modulation of H/R-caused RTEC apoptosis and GSK3β phosphorylation. This study provides AKI patients with promising therapeutic strategies and clinical cautions.


Nephron ◽  
2021 ◽  
pp. 1-4
Author(s):  
David P. Basile ◽  
Jason A. Collett

This review focuses on the potential mediation in the acute kidney injury (AKI)-to-chronic kidney disease (CKD) transition by lymphocytes. We highlight evidence that lymphocytes, particularly Th17 cells, modulate the severity of both acute injury and chronic kidney disease. Th17 cells are strongly influenced by the activity of the store-operated Ca<sup>2+</sup>channel Orai1, which is upregulated on lymphocytes in animal models of AKI. Inhibition of this channel attenuates both acute and chronic kidney injury in rodent models. In addition, Oria1+ cells are increased in peripheral blood of patients with AKI. Similarly, peripheral blood cells manifest an early and sustained increase in Orai1 expression in a rat model of ischemia/reperfusion, suggesting that blood cell Orai1 may represent a marker informing potential Th17 activity in the setting of AKI or the AKI-to-CKD transition.


Sign in / Sign up

Export Citation Format

Share Document