scholarly journals Atmospheric Corrosion Analysis and Rust Evolution Research of Q235 Carbon Steel at Different Exposure Stages in Chengdu Atmospheric Environment of China

Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Zhigao Wang ◽  
Mei Wang ◽  
Jie Jiang ◽  
Xinsheng Lan ◽  
Fangqiang Wang ◽  
...  

In order to effectively reduce and retard corrosion of the power transmission and transformation equipment in Chengdu power grid and to improve power supply reliability, Q235 carbon steel material which is the most widely used metal material in power grid was selected as the targeted research object in this article. Exposure experiments were performed in urban atmospheric environment of Chengdu city in the southwest region of China. The corrosion behavior of Q235 carbon steel material was investigated at different seasons. The macro- and micromorphologies after corrosion were observed using a digital camera and scanning electron microscopy (SEM), respectively. Element distribution of the rust layer and the corrosion products was characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR); the corrosion mechanism was also briefly analyzed.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bian Li Quan ◽  
Jun Qi Li ◽  
Chao Yi Chen

This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM) equipped with EDS, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2−and S2O32-are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2−and S2O32-is different for the corrosion of Q235 carbon steel.


2013 ◽  
Vol 710 ◽  
pp. 41-44
Author(s):  
Bin Zhao ◽  
Li Ke Zou

A new chloroacetic-acid modified imidazoline (CAMI) was synthesized via the quaternization of imidazoline intermediate, obtained from the amidation and cyclization reactions of benzoic acid and diethylene triamine, with chloroacetic-acid. The performance of the synthesized compound CAMI as corrosion inhibitor for Q235 carbon steel in 5% sulfuric acid solution was investigated by weight loss measurement and potentiodynamic polarization technique. The results show that CAMI possesses strong inhibitive effect on the corrosion of Q235 carbon steel in acid medium and restrains the corrosion without changing the cathodic and anodic corrosion mechanism as a mixed-type inhibitor.


2021 ◽  
Vol 300 ◽  
pp. 02002
Author(s):  
Xiangnan Niu ◽  
Haiping Hou ◽  
Kai Che ◽  
Ning Yu ◽  
Yike Wei ◽  
...  

China has the largest and most complex power grid in the world. But at the same time, the power grid is also facing severe challenges from the natural environment, so its security and reliability are particularly important. In this paper, Q235 carbon steel was used for exposure test. 81 experimental sites were set up in five cities of Southern Hebei Province. And the data of two years were collected and sorted out, and the map of atmospheric corrosion grade in Southern Hebei Province was drawn.


Author(s):  
Nina B. Rubtsova ◽  
Sergey Yu. Perov ◽  
Olga V. Belaya ◽  
Tatiana A. Konshina

Introduction. Electromagnetic safety of power grid facilities staff requires the exclusion of electromagnetic fields (EMF) harmful effects. EMF is evaluated by 50 Hz electric and magnetic fields (EF and MF) values in the framework of working conditions special assessment, and very rarely the analysis of the electromagnetic environment (EME) is carried out in depth. The aim of the study - EME hygienic assessment of power grid EHV facilities personnel workplace with adequate 50 Hz EF and MF levels evaluation as well as the analysis of EF and MF in the frequency range from 5 Hz to 500 Hz amplitude-frequency characteristics. Materials and methods. 50 Hz EF and MF values assessment was carried out on open switchgears (S) of substations and within sanitary breaks of 500 and 750 kV overhead power transmission lines (OTL). Measurements along to OTL trasses was performed using matrix-based method. Measurements and analysis of EF and MF values in 5-500 Hz frequency range amplitude-frequency characteristics were performed in the territory of 500 and 750 kV S. Results. Power frequency 50 Hz measurements results at 500 and 750 kV S ground-level personnel workplaces showed the presence of an excess of permissible limit values by EF intensity and the absence of an excess by MF. The measured EF values within 500 and 750 kV OTL sanitary gaps require limiting the working time of linemen due to the excess of the hygienic norms for full work shift, while the MP levels were almost completely within the standard values for persons not occupationally connected with electrical installations maintenance. MF and EE frequency range from 50 Hz to 500 Hz spectral characteristics analysis showed that 3rd harmonic percentage does not exceed 2.5% for EF and 6% for MF of the main level, the level of the 5th harmonic does not exceed 1% for EF and 3.5% for MF, the level of the 7th harmonic does not exceed 0.2% for EF and 0.8% for MF. These data show despite its low levels the contribution of MF different harmonics in a possible adverse impact on humane than EF corresponding harmonics. Conclusions. There was the confirmation of the previously justified use of the "matrix" scheme for of EF and MF values measurement along OTL routes. The relevance of to EF and MF all frequency components expos ure assessing possible health risk in extremely high voltage S territories and under OTL, based on international recommendations due to the lack of sanitary regulations in the Russian Federation for >50 Hz-30 kHz EF and MF, is shown.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2629
Author(s):  
Shimin Chen ◽  
Bo Li ◽  
Rengui Xiao ◽  
Huanhu Luo ◽  
Siwu Yu ◽  
...  

In this work, a ternary TiO2/Graphene oxide/Polyaniline (TiO2/GO/PANI) nanocomposite was synthesized by in situ oxidation and use as a filler on epoxy resin (TiO2/GO/PANI/EP), a bifunctional in situ protective coating has been developed and reinforced the Q235 carbon steel protection against corrosion. The structure and optical properties of the obtained composites are characterized by XRD, FTIR, and UV–vis. Compared to bare TiO2 and bare Q235, the TiO2/GO/PANI/EP coating exhibited prominent photoelectrochemical properties, such as the photocurrent density increased 0.06 A/cm2 and the corrosion potential shifted from −651 mV to −851 mV, respectively. The results show that the TiO2/GO/PANI nanocomposite has an extended light absorption range and the effective separation of electron-hole pairs improves the photoelectrochemical performance, and also provides cathodic protection to Q235 steel under dark conditions. The TiO2/GO/PANI/EP coating can isolate the Q235 steel from the external corrosive environment, and may generally be regarded a useful protective barrier coating to metallic materials. When the TiO2/GO/PANI composite is dispersed in the EP, the compactness of the coating is improved and the protective barrier effect is enhanced.


2014 ◽  
Vol 641-642 ◽  
pp. 427-433
Author(s):  
Shuang Cheng ◽  
Feng Lin ◽  
Pei Long Yang ◽  
Pei Ke Zhu ◽  
Jin Gen Deng ◽  
...  

This paper analyzed the corrosion environment of Missan oilfields and investigated the oilfield country tubular goods used in other similar oilfields. Summarized the effect of partial pressure ratio of H2S/CO2 and Cl-to the corrosion behavior of OCTG. This paper concluded the service condition, test results and anti-corrosion mechanism of carbon steel, low-chrome steel, modified martensitic stainless steel and nickel alloy. Finally arrived at conclusion that the nickel alloy can meet the requirement of Missan oilfields, some literature reported that the modified martensitic stainless steel can apply in H2S/CO2 environment. In the condition that be easy to replace the tubular, carbon steel and low-chrome steel tubular can meet the requirement with corrosion inhibitor.


Sign in / Sign up

Export Citation Format

Share Document