scholarly journals Study the Effects of Carbon Nanotubes and Graphene Oxide Combinations on the Mechanical Properties and Flame Retardance of Epoxy Nanocomposites

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tuan Anh Nguyen ◽  
Thi Thu Trang Bui

Carbon-based fillers have attracted a lot of interest in polymer composites because of their ability to alter beneficial properties at low filler concentrations, good surface bonding with polymers, availability in different forms, etc. Carbon-based materials (such as fullerene, CNTs, graphene, and graphite) have been studied as fillers with enhanced fire resistance to epoxy resins. In order to reduce the flammability and improve the thermal stability of epoxy resin-based nanocomposite materials, which can be achieved by a simultaneous combination of graphene oxide and multiwall carbon nanotubes, the graphite oxide (GO) epoxy nanomaterial was developed by 1% wt.% GO combined with 0.02 wand 0.04 wt.% MWCNT. The homogeneous dispersion of GO and MWCNTs in epoxy resins is supported by ultrasonic vibrations. The results showed that when nanocomposite materials were present at the same time MWCNTs and GO, their mechanical properties and fire resistance were significantly improved. Nanomaterials are characterized by FT-IR spectroscopy and SEM imaging, mechanical strength, and flame retardant properties (LOI, UL94).

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Tuan Anh Nguyen ◽  
Thi Thu Trang Bui

In this study, nanoclay I.30E and multiwalled carbon nanotubes (MWCNT) were hybridized with graphene oxide (GO) on Epikote 240 epoxy resin. Research results show that the hybridization between 0.5 wt.% GO with 1 or 3 wt.% nanoclay and 0.05 wt.% MWCNT has better mechanical properties and flame-retardant properties than the component materials. The combination of epoxy nanocomposite materials with flame-retardant additives such as nanoclay, MWCNT, and GO leads to improving flame-retardant and mechanical properties. Flame-retardant materials have no environmental problems and are nontoxic. Therefore, the flame-retardant additives studied in this work have great potential to become one of the promising flame-retardant hybrid materials. The study also showed that the result of the combination, the hybridization between the three components (nanoclay, MWCNT, and GO) synergized the mechanisms of fire resistance, creating insulating barriers, preventing objects from entering material exposed to heat and oxygen in the air.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1469 ◽  
Author(s):  
Sanaz Soleymani Eil Bakhtiari ◽  
Hamid Reza Bakhsheshi-Rad ◽  
Saeed Karbasi ◽  
Mohamadreza Tavakoli ◽  
Mahmood Razzaghi ◽  
...  

Every year, millions of people in the world get bone diseases and need orthopedic surgery as one of the most important treatments. Owing to their superior properties, such as acceptable biocompatibility and providing great primary bone fixation with the implant, polymethyl methacrylate (PMMA)-based bone cements (BCs) are among the essential materials as fixation implants in different orthopedic and trauma surgeries. On the other hand, these BCs have some disadvantages, including Lack of bone formation and bioactivity, and low mechanical properties, which can lead to bone cement (BC) failure. Hence, plenty of studies have been concentrating on eliminating BC failures by using different kinds of ceramics and polymers for reinforcement and also by producing composite materials. This review article aims to evaluate mechanical properties, self-setting characteristics, biocompatibility, and bioactivity of the PMMA-based BCs composites containing carbon nanotubes (CNTs), graphene oxide (GO), and carbon-based compounds. In the present study, we compared the effects of CNTs and GO as reinforcement agents in the PMMA-based BCs. Upcoming study on the PMMA-based BCs should concentrate on trialing combinations of these carbon-based reinforcing agents as this might improve beneficial characteristics.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Tuan Anh Nguyen

Modern flame retardants are organic compounds containing halogen or phosphorus groups and are not always well dispersed in polymers. Thus, by using a small amount of nanoclay and multiwalled carbon nanotubes (MWCNTs), they can significantly reduce the number of conventional flame retardant additives, making the material with optimal flame retardant properties. Conventional flame retardants always have some negative effects on the mechanical properties of the polymer substrate, so by using nanoclay and MWCNTs, those adverse effects can be minimized and overcome. In this work, in order to improve the mechanical properties and flame retardant of nanocomposite materials, nanoclay I.30E and MWCNTs are mixed into epoxy, with the selected percentage of 2% and 0.02% by weight, respectively, stirring mechanically for 7, 8, and 9 hours at 3000 rpm at 80°C, then performing ultrasonic vibration for 6 hours at 65°C.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Tuan Anh Nguyen ◽  
Quang Tung Nguyen

In this study, fly ash (FA) and multiwalled carbon nanotubes (MWCNTs) were used to make environmentally friendly nanocomposites, which have high fire retardant properties and high mechanical properties. Industrial waste such as fly ash has become a major concern during the treatment of environmental pollution. MWCNTs were used in this experiment to enhance the flame retardant properties and mechanical properties of materials with fly ash additives. MWCNTs content (0.03, 0.04, and 0.05 wt.%) and fly ash content (30, 40, and 50 wt.%) were studied for three different levels. The flame retardancy of the material is significantly improved by the addition of fly ash/MWCNTs at different rates, especially at 0.04 wt. % MWCNTs and 40 wt. % fly ash with LOI at 26.8%. Regarding mechanical properties, tensile strength increases as fly ash/MWCNTs increase, up to a critical point. On the other hand, the compressive strength of composite increases continuously as fly ash/MWCNTs increase. Scanning electron microscopy (SEM) was used to observe the morphology of fly ash and MWCNTs as well as its distribution in the matrix. This will help analyze the influence of the effectiveness of the combination of fly ash and MWCNTs to the flame retardancy and mechanical properties of fly ash/MWCNTs/epoxy nanocomposites.


2013 ◽  
Vol 748 ◽  
pp. 222-226
Author(s):  
Ehsan Darabi ◽  
Reza Bakhtiari ◽  
Ali Ravaee

The experimental results of epoxy resin modified by multiwall carbon nanotubes (MWCNTs) as two-phase nanocomposite are presented in the current paper. Effects of improved dispersion on reinforcement of the epoxy resins were investigated through three different prevalent conventional tests. Three various types of test specimens in four values of Mwcnt weight ratios, 0, 0.5, 1 and 2% to the GY6010 resin were fabricated according to corresponding ASTM standards by a novel technique. The static strength and stiffness tests led to the conclusion that the appropriate dispersion of Mwcnts into epoxy improves mechanical properties of two-phase nanocoposites.


2015 ◽  
Vol 1782 ◽  
pp. 1-8
Author(s):  
Ning-Qin Deng ◽  
He Tian ◽  
Qing-Tang Xue ◽  
Zhe Wang ◽  
Hai-Ming Zhao ◽  
...  

ABSTRACTNanogenerators (NGs) have great potential to solve the problems of energy depletion and environmental pollution. Here, two types of flexible nanogenerators (FNGs) based on graphene oxide (GO) and multiwall carbon nanotubes (MW-CNTs) are presented. The peak output voltage and current of GO based FNG reached up to 2 V and 30 nA, respectively, under 15 N force at 1 Hz. Moreover, the output voltage could be improved to 34.4 V when the frequency was increased to 10 Hz. It was also found the output voltage increased from 0.1 V to 2.0 V using a released GO structure. The other FNG was made by MW-CNTs mixed with ZnO nanoparticles (NPs). Its output voltage and power reached up to 7.5 V and 18.75 mW, respectively, which is much larger than that of bare ZnO based FNG. Furthermore, a peak voltage of 30 V could be gained by stamping one’s foot on the FNG. Finally, a modified NG was fabricated using four springs and two flexible layers. As a result, the voltage and power reached up to 9 V and 27mW, respectively. These works may bring out broad applications in energy harvesting.


2015 ◽  
Vol 17 (2) ◽  
pp. 776-780 ◽  
Author(s):  
Barun Kumar Barman ◽  
Karuna Kar Nanda

We demonstrate a Si-mediated environmentally friendly reduction of graphene oxide (GO) and the fabrication of hybrid electrode materials with multiwall carbon nanotubes and nanofibers. The reduction of GO is facilitated by the nascent hydrogen generated by the reaction between Si and KOH. The overall process consumes 10 to 15 μm of Si each time and the same Si substrate can be used multiple times.


2019 ◽  
Vol 43 (5) ◽  
pp. 2400-2410 ◽  
Author(s):  
Mona Rouhi ◽  
Moslem Mansour Lakouraj ◽  
Hamed Tashakkorian ◽  
Vahid Hasantabar

In this study, a copolymer of aniline and indole P(ANI-co-IN) and its nanocomposites based on graphene oxide (GO) and functional carbon nanotubes (CNT-COOH) were synthesized by heterogeneous emulsion polymerization.


Sign in / Sign up

Export Citation Format

Share Document